Skip to main content

Nanoparticles: An Emerging Weapon for Mitigation/Removal of Various Environmental Pollutants for Environmental Safety

  • Chapter
  • First Online:
Emerging and Eco-Friendly Approaches for Waste Management

Abstract

Nanotechnology is a recent field of technology and nanoparticle materials are fundamental units that measure within the range 1–100 nm with several types of morphologies. They have exceptional and unique catalytic properties, which are associated with their size and are changed from their bulk materials. These nanoparticle materials are prepared by the various methods such as chemical, physical and biological methods. The prepared nanoparticles are investigated by numerous characterisation techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, absorbance spectroscopy, photoluminescence spectroscopy. XRD revealed the crystalline nature of the nanoparticles. SEM and TEM images provides information on the morphology and particle size distribution, and BET revealed the surface properties of the nanoparticles. Optical properties are investigated by absorbance and photoluminescence spectroscopic techniques. The effective photo-catalysis of organic toxic pollutants and heavy metals from the environment have been a challenging subject for human health. Much research has explored the environmental behaviour of nanostructured materials for the effective removal of hazardous organic pollutants and heavy metals, existing both in the surface and underground wastewater. The goal of this chapter is to indicate the outstanding removal capability and environmental remediation of nanostructured materials for various toxic organic pollutants and heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Ayuso E, Garcıa-Sánchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862

    Article  CAS  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 190:208–222

    Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  Google Scholar 

  • Baladi A, Mamoory RS (2010) Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles. Appl Surf Sci 256:7559–7564

    Article  CAS  Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  CAS  Google Scholar 

  • Bhattacharya S, Saha I, Mukhopadhyay A, Chattopadhyay D, Chand U, Chatterjee D (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol 3:59–64

    Google Scholar 

  • Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116

    Article  CAS  Google Scholar 

  • Campos AFC, Aquino R, Cotta T, Tourinho FA, Depeyrot J (2011) Using speciation diagrams to improve synthesis of magnetic nanosorbents for environmental applications. Bull Mater Sci 34:1357–1361

    Article  CAS  Google Scholar 

  • Chen D, Jiao X, Cheng G (1999) Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun 113:363–366

    Article  CAS  Google Scholar 

  • Cheng R, Wang J, Zhang W (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. J Hazard Mater 144:334–339

    Article  CAS  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  • Daou TJ, Pourroy G, Colin SB et al (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404

    Article  CAS  Google Scholar 

  • Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Matis KA (2003) Sorption of As (V) ions by akaganéite-type nanocrystals. Chemosphere 50:155–163

    Article  CAS  Google Scholar 

  • Di ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P et al (2004) Dendritic chelating agents. 1. Cu (II) binding to ethylene diamine core poly (amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651

    Article  CAS  Google Scholar 

  • Djurisic AB, Chen XY, Leung YH (2012) Recent progress in hydrothermal synthesis of zinc oxide nanomaterials. Recent Patents Nanotech 6:124–134

    Article  CAS  Google Scholar 

  • Egerton RF (2005) Physical principles of electron microscopy. Springer, New York

    Book  Google Scholar 

  • Fard MA, Aminzadeh B, Vahidi H (2013) Degradation of petroleum aromatic hydrocarbons using TiO2 nanopowder film. Environ Technol 34:1183–1190

    Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • Ghorbani HR (2014) A review of methods for synthesis of al nanoparticles. Orient J Chem 30:1941–1949

    Article  CAS  Google Scholar 

  • Gupta K, Bhattacharya S, Chattopadhyay D et al (2011) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic (V) sorption behavior. Chem Eng J 172:219–229

    Article  CAS  Google Scholar 

  • Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153

    Article  CAS  Google Scholar 

  • Hur TB, Phuoc TX, Chyu MK (2009) Synthesis of Mg-Al and Zn-Al-layered double hydroxide nanocrystals using laser ablation in water. Opt Lasers Eng 47:695–700

    Article  Google Scholar 

  • Inbaraj BS, Chen BH (2012) In vitro removal of toxic heavy metals by poly (γ-glutamic acid)-coated superparamagnetic nanoparticles. Int J Nanomedicine 7:4419–4432

    CAS  Google Scholar 

  • Innes B, Tsuzuki T, Dawkins H et al (2002) Nanotechnology and the cosmetic chemist. Cosmetics Aerosols Toiletries Australia 15:10–24

    Google Scholar 

  • Jameia MR et al (2013) Degradation of oil from soilusing nano zero valent iron. Sci Int 25:863–867

    Google Scholar 

  • Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–483

    Google Scholar 

  • Josephine A, Nithya K, Amudha G, Veena CK, Preetha SP, Varalakshmi P (2008) Role of sulphated polysaccharides from Sargassum Wightii in cyclosporine A-induced oxidative liver injury in rats. BMC Pharmacol 8:4

    Article  CAS  Google Scholar 

  • Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696

    Article  CAS  Google Scholar 

  • Kermanpur A, Dadfar MR, Rizi BN, Eshraghi M (2010) Synthesis of aluminum nanoparticles by electromagnetic levitational gas condensation method. J Nanosci Nanotechnol 10:6251–6255

    Article  CAS  Google Scholar 

  • Khoshnevisan K, Bordbar AK, Zare D et al (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673

    Article  CAS  Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T, Krysztafkiewicz A (2010) Obtaining zinc oxide from aqueous solutions of KOH and Zn (CH3COO)2. Physicochem Probl Mineral 44:93–102

    Google Scholar 

  • Kołodziejczak-Radzimska A, Markiewicz AE, Jesionowski T (2012) Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J Nanomater 2012:15

    Article  CAS  Google Scholar 

  • Kostal J, Mulchandani A, Chen W (2001) Tunable biopolymers for heavy metal removal. Macromolecules 34:2257–2261

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Kumari B, Singh DP (2016) A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105

    Article  Google Scholar 

  • Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus Cereus. J Environ Manag 183:204–211

    Article  CAS  Google Scholar 

  • Lai CH, Chen CY (2001) Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44:1177–1184

    Article  CAS  Google Scholar 

  • LaMer VK (1952) Nucleation in phase transitions. Ind Eng Chem Res 44:1270–1277

    Article  CAS  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lee W, Kim MG, Choi J et al (2005) Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J Am Chem Soc 127:16090–16097

    Article  CAS  Google Scholar 

  • Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003a) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B 43:151–162

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z et al (2003b) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li X, He G, Xiao G, Liu H, Wang M (2009) Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci 333:465–473

    Article  CAS  Google Scholar 

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  • Lim TT, Feng J, Zhu BW (2007) Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41:875–883

    Article  CAS  Google Scholar 

  • Liu S, Yu J, Jaroniec M (2011) Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chem Mater 23:4085–4093

    Article  CAS  Google Scholar 

  • Liu M, Wang Z, Zong S et al (2014) SERS detection and removal of mercury (II)/silver (I) using oligonucleotide-functionalized core/shell magnetic silica sphere@ Au nanoparticles. ACS Appl Mater Interfaces 6:7371–7379

    Article  CAS  Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004) Surface area analysis from the Langmuir and BET theories. Characterization of porous solids and powders: surface area, pore size and density. Particle Technology Series, vol 16. Springer, Dordrecht

    Chapter  Google Scholar 

  • Lu C, Chiu H, Liu C (2006) Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855

    Article  CAS  Google Scholar 

  • Macak JM, Stein FS, Schmuki P (2007) Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem Commun 9:1783–1787

    Article  CAS  Google Scholar 

  • Mahato TH, Prasad GK, Singh B, Acharya J, Srivastava AR, Vijayaraghavan R (2009) Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater 165:928–932

    Article  CAS  Google Scholar 

  • Mansoori GA (2002) Advances in atomic & molecular nanotechnology. United Nations Tech Monitor; UN-APCTT Tech Monitor, 2002; Special Issue: 53 59

    Google Scholar 

  • Masciangioli T, Zhang WX (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108A

    Article  CAS  Google Scholar 

  • Mattigod SV, Feng X, Fryxell GE, Liu J, Gong M (1999) Separation of complexed mercury from aqueous wastes using self-assembled mercaptan on mesoporous silica. Sep Sci Technol 34:2329–2345

    Article  CAS  Google Scholar 

  • Mayo JT, Yavuz C, Yean S et al (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75

    Article  CAS  Google Scholar 

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2:49

    Article  CAS  Google Scholar 

  • Mizutani N, Iwasaki T, Watano S, Yanagida T, Tanaka H, Kawai T (2008) Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles. Bull Mater Sci 31:713–717

    Article  CAS  Google Scholar 

  • Moreno N, Querol X, Ayora C, Pereira CF, Janssen-Jurkovicová M (2001) Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ Sci Technol 35:3526–3534

    Article  CAS  Google Scholar 

  • Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C 113:3062–3069

    Article  CAS  Google Scholar 

  • Nador F, Moglie Y, Vitale C, Yus M, Alonso F, Radivoy G (2010) Reduction of polycyclic aromatic hydrocarbons promoted by cobalt or manganese nanoparticles. Tetrahedron 66:4318–4325

    Article  CAS  Google Scholar 

  • Nirmala MJ, Shiny PJ, Ernest V et al (2013) A review on safer means of nanoparticle synthesis by exploring the prolific marine ecosystem as a new thrust area in nanopharmaceutics. Int J Pharm Sci 5:23–29

    CAS  Google Scholar 

  • Northup A, Cassidy D (2008) Calcium peroxide (CaO2) for use in modified Fenton chemistry. J Hazard Mater 152:1164–1170

    Article  CAS  Google Scholar 

  • Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704

    Article  CAS  Google Scholar 

  • Onyango MS, Kojima Y, Matsuda H, Ochieng A (2003) Adsorption kinetics of arsenic removal from groundwater by iron-modified zeolite. J Chem Eng Jpn 36:1516–1522

    Article  CAS  Google Scholar 

  • Ostwald W (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z Phys Chem 34:495–503

    Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  • Parra S, Stanca SE, Guasaquillo I, Thampi KR (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B 51:107–116

    Article  CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As (V) and As (III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337

    Article  CAS  Google Scholar 

  • Pereira KRO et al (2005) Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons. Mat Res 8:77–80

    Article  CAS  Google Scholar 

  • Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp 251:183–190

    Article  CAS  Google Scholar 

  • Qiao S, Sun DD, Tay JH, Easton C (2003) Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Water Sci Tech 47:211–217

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Reiss H (1951) The growth of uniform colloidal dispersions. J Chem Phys 19:482–487

    Article  CAS  Google Scholar 

  • Ristić M, Musić S, Ivanda M, Popović S (2005) Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J Alloys Compd 397:L1–L4

    Article  CAS  Google Scholar 

  • Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: Nanobioremediation. J Nanopart Res 2014

    Google Scholar 

  • Saien J, Shahrezaei F (2012) Organic pollutants removal from petroleum refinery wastewater with nanotitania photocatalyst and UV light emission. Int J Photoenergy 2012:1

    Article  CAS  Google Scholar 

  • Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5:13–17

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation. Chem Eng Commun 191:580–606

    Article  CAS  Google Scholar 

  • Shao D, Sheng G, Chen C, Wang X, Nagatsu M (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79:679–685

    Article  CAS  Google Scholar 

  • Sugimoto T (2007) Underlying mechanisms in size control of uniform nanoparticles. J Colloid Interface Sci 309:106–118

    Article  CAS  Google Scholar 

  • Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983

    Article  CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    Article  CAS  Google Scholar 

  • Van Dillewijn P, Caballero A, Paz JA, González-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2, 4, 6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383

    Article  CAS  Google Scholar 

  • Vorobyova SA, Lesnikovich AI, Mushinskii VV (2004) Interphase synthesis and characterization of zinc oxide. Mater Lett 58:863–866

    Article  CAS  Google Scholar 

  • Wagner C (1961) Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 65:581–591

    CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang J, Peng Z, Huang Y, Chen Q (2004) Growth of magnetite nanorods along its easy-magnetization axis of [110]. J Cryst Growth 263:616–619

    Article  CAS  Google Scholar 

  • Wang Y, Zhang C, Bi S, Luo G (2010) Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor. Powder Technol 202:130–136

    Article  CAS  Google Scholar 

  • Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400

    Article  CAS  Google Scholar 

  • Wei J, Xu X, Liu Y, Wang D (2006) Catalytic hydrodechlorination of 2, 4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res 40:348–354

    Article  CAS  Google Scholar 

  • Wu R, Qu J, Chen Y (2005) Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water. Water Res 39:630–638

    Article  CAS  Google Scholar 

  • Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. J Nanosci Nanotechnol 2:22–48

    Article  CAS  Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, p 813

    Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev 110:5989–6008

    Article  CAS  Google Scholar 

  • Yantasee W, Lin Y, Fryxell GE, Busche BJ, Birnbaum JC (2003) Removal of heavy metals from aqueous solution using novel nanoengineered sorbents: self-assembled carbamoylphosphonic acids on mesoporous silica. Sep Sci Technol 38:3809–3825

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo JT, William WY et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Zhang W, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

  • Zhang Q, Gao L, Guo J (2000) Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B 26:207–215

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang J, Wang J, Zhou S et al (2010) Ionic liquid-controlled synthesis of ZnO microspheres. J Mater Chem 20:9798–9804

    Article  CAS  Google Scholar 

  • Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  CAS  Google Scholar 

  • Ziolli RL, Jardim WF (2001) Photocatalytic decomposition of seawater-soluble crude oil fractions using high surface area colloid nanoparticles of TiO2. J Photochem Photobiol 5887:1–8

    Google Scholar 

  • Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655

    Article  CAS  Google Scholar 

  • Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Babasaheb Bhimrao Ambedkar University (a central University) of U.P India for providing the opportunity to carry out this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hitkari, G., Singh, S., Pandey, G. (2019). Nanoparticles: An Emerging Weapon for Mitigation/Removal of Various Environmental Pollutants for Environmental Safety. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_16

Download citation

Publish with us

Policies and ethics