Skip to main content

Medical and Cosmetic Applications of Fungal Nanotechnology: Production, Characterization, and Bioactivity

  • Chapter
  • First Online:
Fungal Nanobionics: Principles and Applications

Abstract

Nowadays, nanotechnology is widely applied for the development of highly efficient products in the pharmaceutical and cosmetic industries. Converting bioactive materials to nanoscale not only increases their biocompatibility but also increases their effectiveness, even when lower doses are used. Metal nanoparticles can be synthesized by fungal cells both intra- and extracellularly. Stabilization of the physical and chemical properties of various noble metal nanoparticles produced by fungi can be achieved through controlling the size, surface morphology, and surface chemistry of the nanoparticles. Intracellular synthesis provides smaller nanoparticles with well defined dimensions, but contributes to difficulty in downstream processing activity as compared with synthesis by extracellular methods. Recently, the production of nanoparticles from fungi has received extensive attention, owing to the capacity of fungi to produce nanoparticles extracellularly, a process that is more reliable and ecofriendly than intracellular methods, with relatively simple downstream processing. Fungi secrete extracellular enzymes for their survival and they control metal cation transportation to maintain intracellular homeostasis; when more protein is excreted nanoparticle synthesis is increased. To maximize nanoparticle synthesis, the rate of their synthesis can be increased through optimization of the total fungal cell mass and bioprocessing parameters, such as time of exposure, temperature, and pH. This will facilitate increased productivity in the fungal synthesis of nanoparticles for applications in the pharmaceutical and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 42:301–312

    Article  Google Scholar 

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2013) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039

    Article  CAS  Google Scholar 

  • Abo-State MMM, Partila AM (2015) Microbial production of silver nanoparticles by Pseudomonas aeruginosa cell free extract. J Ecol Health Environ 3:91–98

    Google Scholar 

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Al-Bahrani R, Raman J, Lakshmanan H, Hassana AA, Sabaratnam V (2017) Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett 186:21–25

    Article  CAS  Google Scholar 

  • Anthony KJP, Murugan M, Jeyaraj M, Rathinam NK, Sangiliyandi G (2014) Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E. coli and B. subtilis. J Ind Eng Chem 20:2325–2331

    Article  CAS  Google Scholar 

  • Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19:1083–1090

    Article  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles. Article ID 689419, https://doi.org/10.1155/2014/689419

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • AzoNano. (2013, July 9) Titanium Oxide (Titania, TiO2) Nanoparticles – Properties, Applications. Retrieved from http://www.azonano.com/article.aspx?ArticleID=3357

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331–335

    PubMed  CAS  Google Scholar 

  • Balakumaran MD, Ramachandran R, Kalaichelvan PT (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17

    Article  PubMed  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • BBC Research. Nanotechnology: a realistic market assessment (2014). https://www.bccresearch.com/market-research/nanotechnology/nanotechnology-market-assessment-report-nan031f.html

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  PubMed  CAS  Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell free extract of Aspergillus oryzae var viridis. J Hazard Mater 177:539–545

    Article  PubMed  CAS  Google Scholar 

  • Breierová E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C57:634–639

    Article  Google Scholar 

  • Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bӓuerlein E (2000) Biomineralization: from biology to biotechnology and medical applications. Wiley-VCH, Weinheim, p 7

    Google Scholar 

  • Castro Longoria E, Vilchis Nestor AR, Avalos Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Coll Surf B Biointerf 83:42–48

    Article  CAS  Google Scholar 

  • Castro ME, Cottet L, Castillo A (2014) Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett 115:42–44

    Article  CAS  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  PubMed  CAS  Google Scholar 

  • Chan YS, Mat Don M (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng 33:282–288

    Article  CAS  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–216

    Article  PubMed  CAS  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  PubMed  CAS  Google Scholar 

  • Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 7:1189–1202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das SK, Dickinson C, Laffir F, Brougham DF, Marsili E (2012a) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14:1322–1344

    Article  CAS  Google Scholar 

  • Das SK, Liang J, Schmidt M, Laffir E, Marsili E (2012b) Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS Nano 6:6165–6173

    Article  PubMed  CAS  Google Scholar 

  • Das VK, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3Biotech 4:121–126

    Google Scholar 

  • Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer-Verlag, Berlin, pp 17–35

    Chapter  Google Scholar 

  • Derakhshan FK, Dehnad A, Salouti M (2012) Extracellular biosynthesis of gold nanoparticles by metal resistance bacteria: Streptomyces griseus. Synth React Inorg Metal-Org Nano-Metal Chem 42:868–871

    Google Scholar 

  • Dhoondia ZH, Chakraborty H (2012) Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomat Nanotechnol 2:1–7

    Article  CAS  Google Scholar 

  • Ding C, Cheng W, Sun Y, Wang X (2015) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Haz Mat 295:127–137

    Article  CAS  Google Scholar 

  • Dorcheh SK, Vahabi KV (2016) Biosynthesis of nanoparticles by fungi: large-scale production. In: Merillon J-M, Ramawat (eds) Fungal metabolites. Springer, Cham, pp 1–20

    Google Scholar 

  • Du L, Xian L, Feng J (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Article  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH, Alves OL, Espósito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Ingle A, Gade A, Rai M (2010) Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Rai M, Kovics G (eds) Progress in mycology. Springer, Cham, pp 425–449

    Chapter  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  PubMed  CAS  Google Scholar 

  • Ekar SU, Khollam YB, Koinkar PM, Mirji SA, Mane RS, Naushad M, Jadhav SS (2015) Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract. Mod Phys Lett B 29:1540047

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • El-Faham A, Elzatahry A, Al-Othman Z, Elsayed EA (2014) Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity. Int J Nanomedicine 9:1167–1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Elzatahry AA, Al-Enizi AM, Elsayed EA, Butorac RR, Al-Deyab SS, Wadaan MAM, Cowley AH (2012) Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity. Int J Nanomedicine 7:2829–2832

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2009) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  • Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Coll Surf B Biointerf 75:175–178

    Article  CAS  Google Scholar 

  • Fayaz AM, Girilal, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem 46:636–641

    Article  CAS  Google Scholar 

  • Fernández JG, Fernández-Baldo MS, Berni E, Camí G, Durán N, Raba J, Sanz MI (2016) Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem 51:1306–1313

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Matter Bioenergy 2:243–245

    Article  Google Scholar 

  • Gajbhiye S, Sakharwade S (2016) Silver nanoparticles in cosmetics. J Cosmetics, Dermatol Sci Appl 6:48–53

    CAS  Google Scholar 

  • GBI Research (n.d.) “Cosmeceuticals market to 2018-Technological advances and consumer awareness boost commercial potential for innovative and premium-priced products,” http://www.researchandmarkets.com/reports/2393091/cosmeceuticals

  • Gilbert B, Zhang H, Huang F, Finnegan MP, Waychunas GA, Banfield JF (2003) Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem Trans 4:20–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica. Acta Part A Mol Biomol Spectrosc 106:170–174

    Article  CAS  Google Scholar 

  • Govindappa M, Farheen H, Chandrappa CP, Channabasava Rai RV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci Nanosci Nanotechnol 7:035014

    Article  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996) Stationary phase induction of GLR1 expression is mediated by the yAP-1 transcriptional protein in Saccharomyces cerevisiae. Mol Microbiol 22:739–774

    Article  PubMed  CAS  Google Scholar 

  • Grand View Research Report. (2015) Silver nanoparticles market by application (Electronics and Electrical, Healthcare, Food and Beverages, Textiles) and segment forecasts to 2022, Report ID: 978-1-68038-413-0. https://www.grandviewresearch.com/industry-analysis/silver-nanoparticles-market

  • Gref R, Minamitake Y, Perracchia MT, Trubeskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antoine van Leeuwenhock 103:1113–1123

    Article  CAS  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413

    Google Scholar 

  • Gurunathan S, Han JW, Park JH, Kim JH (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  PubMed  CAS  Google Scholar 

  • Handa O, Kokura S, Adachi S, Takagi T, Naito Y, Tanigawa T, Yoshikawa T (2006) Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology 227:62–72

    Article  PubMed  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, Peng Y, Liu X, Luo Q (2007) A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 33:161–166

    Article  PubMed  Google Scholar 

  • Husein A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  CAS  Google Scholar 

  • Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager J (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463

    Article  PubMed  CAS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 2014, Article ID 359316, 18 pages

    Google Scholar 

  • Isaac G, Renitta RE (2015) Brown algae mediated synthesis, characterization of gold nano particles using Padina pavonica and their antibacterial activity against human pathogens. Int J Pharm Tech Res 8:31–40

    Article  CAS  Google Scholar 

  • Ishida K, Cipriano TF, Rocha GM, Weissmuller G, Gomes F, Miranda K, Rozental S (2013) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticles characterisation and analysis of antifungal activity against pathogenic yeast. Mem Inst Oswaldo Cruz, Rio de Janeiro, pp 1–9

    Google Scholar 

  • Ishiwatari S, Suzuki T, Hitomi T, Yoshino T, Matsukuma S, Tsuji T (2007) Effects of methyl paraben on skin keratinocytes. J Appl Toxicol 27:1–9

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K (2016) Understanding mechanism of fungus mediated nanosynthesis: a molecular approach. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 1–22

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2010) Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: a novel green approach. Int J Green Nanotechnol Phys Chem 2:P31–P38

    Article  Google Scholar 

  • Joel EL, Bhimba BV (2012) Fungi from mangrove plants: their antimicrobial and anticancer potentials. Int J Pharm Pharm Sci 4:139–142

    Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Coll Surf B Biointerfaces 71:133–137

    Article  CAS  Google Scholar 

  • Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2:47

    Article  Google Scholar 

  • Khatami M, Mehnipor R, Poor MHS, Jouzani GS (2016) Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Clust Sci 27:1601–1612

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    PubMed  CAS  Google Scholar 

  • Kitching M, Ramani M, Marsil E (2014) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Thematic Issue Fungal Biotechnol 8:904–917

    Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8:904–917

    Article  PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environm Toxicol and Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravanib S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei sub sp. casei. J Chem Technol Biotechnol 87:932–937

    Article  CAS  Google Scholar 

  • Kulkarni SK (2015) Nanotechnology: principles and practices. Springer, Cham, pp 135–197

    Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Ahmad A, Khan MI (2007) Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol Appl Biochem 47:191–195

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Smita K, Sánchez E, Guerra S, Cumbal L (2016) Ecofriendly ultrasound-assisted rapid synthesis of gold nanoparticles using Calothrix algae. Adv Nat Sci Nanosci Nanotechnol 7:025013

    Article  CAS  Google Scholar 

  • Kushwaha A, SingH VK, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5:65–70

    CAS  Google Scholar 

  • Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284:4354–4364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Xu H, Chen ZH, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  PubMed  CAS  Google Scholar 

  • Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol Article ID 843687, 14 pages

    Google Scholar 

  • Maftoun P, Johari H, Soltani M, Malik R, Othman NZ, El Enshasy HA (2015) The edible mushroom Pleurotus spp.: I. Biodiversity and nutritional values. Int J Biotechnol Well Ind 4:67–83

    Article  Google Scholar 

  • Magdi HM, Bhushan B (2015) Extracellular biosynthesis and characterization of gold nanoparticles using the fungus Penicillium chrysogenum. Microsyst Technol 21:2279–2285

    Article  CAS  Google Scholar 

  • Maliszewska I (2013) Microbial mediated synthesis of gold nanoparticles: preparation, characterization and cytotoxicity studies. Dig J Nanomater Biostr 8:1123–1131

    Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using Ascomycota Fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    Article  CAS  Google Scholar 

  • Mansoori GA (2010) Synthesis of nanoparticles by fungi. US Patent Application 20100055199

    Google Scholar 

  • Manzoor-ul-Haq, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol Int J 5:1–8

    Google Scholar 

  • Marcato PD, De Paula LB, Melo PS, Ferreira IR, Almeida ABA, Torsoni AS, Alves OL (2015) In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J Nanomater 2015:1–11

    Article  CAS  Google Scholar 

  • Markus J, Mathiyalagna R, Kim YJ, Abbai R, Singh P, Ahna S, Perez ZEJ, Hurha J, Yang DC (2016) Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51Tisolated from Korean kimchi. Enz Microb Technol 95:85–93

    Article  CAS  Google Scholar 

  • Mason C, Vivekanadhan S, Misra M, Mohanty AK (2012) Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles. World J Nano Sci Eng 2:47–52

    Article  CAS  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  PubMed  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  PubMed  CAS  Google Scholar 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43:907–914

    Article  CAS  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as nano weapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Mishra AN, Bhadaurla S, Singh Gaur M, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62:45–48

    Article  CAS  Google Scholar 

  • Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SII (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630

    Article  PubMed  CAS  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schult S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  • Moghaddam A, Namvar F, Morini M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morones JR, Elechiguerra LJ, Camacho A, Holt K, Kouri BJ, Ramirez TJ, Yocaman JM (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandai D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Kumar PAV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4¯ ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Choudhury S, Tewari R, Tyagi AK, Kale SP (2012) Synthesis of uniform gold nanoparticles using non-pathogenic bio-control agent: evolution of morphology from nano-spheres to triangular nanoprisms. J Colloid Interface Sci 367:148–152

    Article  PubMed  CAS  Google Scholar 

  • Narasimha G, Praveen B, Mallikarjuna K, Deva Prasad Raju B (2011) Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity. Int J Nano Dim 2:29–36

    CAS  Google Scholar 

  • Narasimha G, Khadri H, Alzohairy M (2012) Antiviral properties of silver nanoparticles synthesized by Aspergillus ps. Pharm Lett 4(2):649–651

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Narayanan KB, Park HO, Han SS (2015) Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere 141:169–175

    Article  PubMed  CAS  Google Scholar 

  • Naz SS, Shah MR, Islam NU, Khan A, Nazi S, Qaisar S, Alam SS (2014) Synthesis and bioactivities of silver nanoparticles capped with 5-amino-β-resorcylic acid hydrochloride dihydrate. J Nanobiotechnol 12:34

    Google Scholar 

  • Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and antimicrobial studies. 3 Biotech 6:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Omidi B, Hashemi SJ, Bayat M, Larijani K (2014) Biosynthesis of silver nanoparticles by Lactobacillus fermentum. Bull Env Pharmacol Life Sci 3:186–192

    Google Scholar 

  • Ortega G, Fernandez-Baldo MA, Fernandez JG (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine 10:2021–2031

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ottoni CA, Simões MF, Fernandes S, dos Santos JG, da Silva ES, de Souza RFB, Maiorano AE (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oza G, Pandey S, Mewada A, Kalita G, Sharon M (2012) Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 3:1405–1412

    CAS  Google Scholar 

  • Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1:228–234

    Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Długoński J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105

    Article  CAS  Google Scholar 

  • Park SG, Cha M-K, Jeong W, Kim I-H (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275:5723–5732

    Article  PubMed  CAS  Google Scholar 

  • Park TJ, Lee KG, Lee SY (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100:521–534

    Article  PubMed  CAS  Google Scholar 

  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra J (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mat Sci Eng C 53:298–309

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Mol Biomol Spectrosc 73:374–381

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumara AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B: Biointerfaces 74:309–316

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles. Article ID 963961, https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad K, Jha AK, Kulkarni R (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    Article  PubMed Central  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen Q (2017b) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretsch A, Nagl M, Schwendinger K, Kreiseder B, Wiederstein M, Pretsch D, Hundsberger H (2014) Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PLoS One 9:e97929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanoparts Res 11:1811–1815

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gaje A (2009) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge P (eds) Applied mycology. CABI, UK, pp 273–277

    Chapter  Google Scholar 

  • Rai M, Yadav A, Gade A (2010) Mycofabrication, mechanistic aspect and multifunctionality of metal nanoparticles–where are we? And where should we go? In: Mendez-Vilaz A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Publisher, Badajoz, pp 1343–1354

    Google Scholar 

  • Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A: Mol Biomol Spectrosc 91:23–29

    Article  CAS  Google Scholar 

  • Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta A 99:166–173. 2012

    Article  CAS  Google Scholar 

  • Rajesh S, Dharanishanthi V, Kanna AV (2014) Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. J Exp Nanosci 10:1143–1152

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metal. 2014: Article ID 692643

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem 6:1–13

    Article  CAS  Google Scholar 

  • Ranganath E, Rathod V, Banu A (2012) Screening of Lactobacillus sp. for mediating the biosynthesis of silver nanoparticles from silver nitrate. IOSR J Pharm 2:237–241

    Google Scholar 

  • Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10:6567–6574

    Article  PubMed  CAS  Google Scholar 

  • Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enz Microb Technol 45:267–273

    Article  CAS  Google Scholar 

  • RNCOS E-Services Pvt. Ltd (2016) “Global cosmeceuticals market outlook 2016,” http://www.giiresearch.com/report/rnc263147- global-cosmeceuticals-marketoutlook.html

  • Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MCP, Ruizm RC, Melo IS, Tasic L, De Souza AO (2013) Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol 97:775–782

    Article  PubMed  CAS  Google Scholar 

  • Ruma K, Kumar S, Prakash HS (2013) Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharma Pharm Sci 5:889–897

    Google Scholar 

  • Sadhasivam S, Shanmugam P, Veerapandian M (2012) Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25:351–360

    Article  PubMed  CAS  Google Scholar 

  • Samundeeswari A, Dhas SP, Nirmala J (2012) Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol Appl Biochem 59:503–507

    Article  PubMed  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  PubMed  CAS  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Sarangadharan S, Nallusamy S (2015) Biosynthesis and characterization of silver nanoparticles produced by Bacillus licheniformis. Int J Pharma Med Biol Sci 4:236–239

    CAS  Google Scholar 

  • Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B: Biointerfaces 88:325–331

    Article  PubMed  CAS  Google Scholar 

  • Sawle BJ, Salimath B, Deshpande R, Bedre RD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Tech Adv Mater 9:1–6

    Google Scholar 

  • Schröfel A, Kratošova G, Šafarˇik I, Šafarˇikova M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater 10:4023–4042

    Article  PubMed  CAS  Google Scholar 

  • Scott D, Toney M, Muzikár M (2008) Harnessing the mechanism of glutathione reductase for synthesis of active site bound metallic nanoparticles and electrical connection to electrodes. J Am Chem Soc 130:865–874

    Article  PubMed  CAS  Google Scholar 

  • Sen K, Sinha P, Lahiri S (2011) Time dependent formation of gold nanoparticles in yeast cells: a comparative study. Biochem Eng J 55:1–6

    Article  CAS  Google Scholar 

  • Sen IK, Mandal AK, Chakraborti S, Dey B, Chakraborty R, Islam SS (2013a) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449

    Article  PubMed  CAS  Google Scholar 

  • Sen IK, Maity K, Islam SS (2013b) Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohyd Polym 91:518–528

    Article  CAS  Google Scholar 

  • Shams S, Pourseyedi S, Raisi M (2013) Green synthesis of Ag nanoparticles in the present of Lens culinaris seed exudates. Int J Agric Crop Sci 5(23):2812–2815

    Google Scholar 

  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B Biointerfaces 111:680–687

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Res 745:84–91

    Article  PubMed  CAS  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interf Sci 209:40–48

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shetty PR, Kumar YS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621

    Article  CAS  Google Scholar 

  • Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    Article  PubMed  CAS  Google Scholar 

  • Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS (2017) Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Gen Eng Biotechnol 15:31–39

    Article  Google Scholar 

  • Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3:351–358

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14:831

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci 26:1473–1482

    Article  CAS  Google Scholar 

  • Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J Pharm Technol Res 6:1718–1723

    CAS  Google Scholar 

  • Sun Li Y, Liang XJ, Wang PC (2012) Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multifunctions. J Nanomat 2011:469031–469043

    Google Scholar 

  • Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J Pharm Technol Res 1:1523–1529

    CAS  Google Scholar 

  • Surendiran A, Sandhiya S, Pradhan SC, Adithan C (2009) Novel applications of nanotechnology in medicine. Indian J Med Res 130:689–701

    PubMed  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Moon JW, Gu B, Mortensen NP, Allison DP, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and Gram-positive bacteria. Environ Sci Technol 44:5210–5215

    Article  PubMed  CAS  Google Scholar 

  • Tamás MJ, Labarre J, Toledano MB, Wysocki R (2005) Mechanisms of toxic metal tolerance in yeast. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg

    Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  PubMed  CAS  Google Scholar 

  • Thibault S, Aubriet H, Arnoult C, Ruch D (2008) Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XPS. Microchim Acta 163:211–217

    Article  CAS  Google Scholar 

  • Trotter EW, Grant CM (2005) Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot Cell 4:392–400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2016) “Is it a cosmetic, a drug, or both? (Or is it soap?)” Retrievedfrom http://www.fda.gov/cosmetics/guidancecomplianceregulatoryinformation/ucm074201.htm

  • Udaya Prakash NK, Bhuvaneswari S, Prabha SB, Kavitha K, Sandhya KV, Sathyabhuvaneshwari P, Bharathiraja B (2014) Green synthesis of silver nanoparticles using airborne actinomycetes. Int J Chem Tech Res 6:4123–4127

    CAS  Google Scholar 

  • Vahabi KV, Dorcheh SK (2014) Biosynthesis of silver nano-particles by Trichoderma and its medical applications. In: Gupta V, Schmoll M, Herrera-Estrella A, Upadhyay R, Druzhinina I, Tuohy M (eds) Biotechnology and Biology of Trichoderma. Springer, Cham, pp 393–404

    Chapter  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei: a route for large-scale production of AgNPs. Insci J 1:65–79

    Article  CAS  Google Scholar 

  • Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34:194–197

    Article  CAS  Google Scholar 

  • Varshney R, Mishra AN, Bhadauria S, Gaura MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest J Nanomat Biostruc 4:349–355

    Google Scholar 

  • Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  PubMed  CAS  Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16–22

    Article  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus Phaenerochaete chrysosporium. Coll Surf B Biointerfaces 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralokar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mat Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Visha P, Nanjappan K, Selvaraj P, Jayachandran S, Elango A, Kumaresan G (2015) Biosynthesis and structural characteristics of selenium nanoparticles using Lactobacillus acidophilus bacteria by wet sterilization process. Int J Adv Vet Sci Technol 4:178–183

    Article  Google Scholar 

  • Wang L, Liu CC, Wang YY, Xu H, Su H, Cheng X (2016) Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Curr Appl Phys 16:969e973

    Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependent antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B Biointerfaces 101:162–170

    Article  PubMed  CAS  Google Scholar 

  • Wanigasekara J, Witharana C (2016) Applications of nanotechnology in drug delivery and design-an insight. Curr Trends Biotechnol Pharm 10:78–91

    CAS  Google Scholar 

  • Wigginton JNS, De Titta A, Piccapietra F, Dobias J (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:2163–2168

    Article  PubMed  CAS  Google Scholar 

  • Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L (2016) Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine 11:1899–1906

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  PubMed  CAS  Google Scholar 

  • Yousefzadi JAM, Rahimi Z, Ghafori V (2014) The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen). Mater Lett 137:1–4

    Article  CAS  Google Scholar 

  • Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47:3710–3725

    Article  CAS  Google Scholar 

  • Zhang X, He X, Wang K, Yang X (2011a) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol 7:245–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011b) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerf 88:196–201

    Article  CAS  Google Scholar 

  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J (2016a) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surfaces A Physicochem Eng Aspects 497:280–285

    Article  CAS  Google Scholar 

  • Zhang XF, Liu ZG, Shen W, Gurunathan S (2016b) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Article  PubMed Central  CAS  Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sens Actuators B Chem 148:247–252

    Article  CAS  Google Scholar 

  • Zhou X, Xu W, Liu G, Panda D, Chen P (2010) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132:139–146

    Google Scholar 

  • Zinicovscaia I, Tsibakhashvili NY, Kirkesali EI (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4:3408–3417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham A. El Enshasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Enshasy, H.A. et al. (2018). Medical and Cosmetic Applications of Fungal Nanotechnology: Production, Characterization, and Bioactivity. In: Prasad, R., Kumar, V., Kumar, M., Wang, S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8666-3_2

Download citation

Publish with us

Policies and ethics