Skip to main content

Metal and Metal Oxide Mycogenic Nanoparticles and Their Application As Antimicrobial and Antibiofilm Agents

  • Chapter
  • First Online:
Fungal Nanobionics: Principles and Applications

Abstract

In the recent decades, nanotechnology showed extensive expansion and contributing different application in various interdisciplinary fields. Nanoparticles are the leading edge of the rapidly growing field of nanotechnology. Nanoparticles are defined as solid particles at the size range of 10–100 nm with at least one dimension. These nanoparticles gain greater attention due to their surface area to volume ratio which makes nanoparticles more reactive. Among the nanomaterials, metal and metal oxide nanoparticles are considered as magic bullets that deal with a wide range of applications. Exploitation of different physiochemical methods in metal and metal oxide nanoparticle synthesis ends up numerous drawbacks such as energy intensive, costly, rely upon toxic chemicals, time-consuming, and produce hazardous waste. Hence, biological synthesis of metal and metal oxide nanoparticles is majorly accepted as alternative technology to overcome limits of physical and chemical methods. Among the biological systems, the synthesis of metal and metal oxide nanoparticles using diverse range fungi has gained significant importance due to their unique properties that facilitate fermentation and downstream process. Usually fungi obey certain mechanism to synthesis the metal and metal oxide nanoparticles. Herein, metal ions are trapped on the surface or inside of the fungi. The trapped metal ions undergo reduction to form nanoparticles in the presence of enzymes and/or organic polymers. Fungi undergo two different modes of nanoparticle synthesis like extracellular and intracellular. Under large-scale production, extracellular process has obvious advantage over an intracellular process to handle the expenses in downstream process. Keeping the inherent advantages of fungal-mediated metal and metal oxide nanoparticle synthesis, fungi are now being gradually employed as myconanofactories for the synthesis of myconanoparticles. Presently, myconanoparticles are gaining attention to employ as antimicrobial and antibiofilm agents. Emergence of antibiotic-resistant microorganism created challenging situation to invent novel therapeutics to eradicate them. Myconanoparticles are an alternative option to eradicate the antibiotic-resistant and biofilm-forming microorganisms. Fungi-mediated synthesis of metal and metal oxide nanoparticles is gaining importance as they are eco-friendly, and fabricated material derived from the fungi enhances the antimicrobial and antibiofilm efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdelRahim K, Mahmoud SY, Ali AM (2015) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24(1):208–216

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B: Biointerfaces 107:227–234

    Article  PubMed  CAS  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Azmath P, Baker S, Rakshith D, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24(2):140–146

    Article  PubMed  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces 68(1):88–92

    Article  PubMed  CAS  Google Scholar 

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT (2015) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 82:8–20

    Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583

    Article  CAS  Google Scholar 

  • Bao H, Hao N, Yang Y, Zhao D (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3(7):481–489

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Bathrinarayanan PV, Thangavelu D, Muthukumarasamy VK, Munusamy C, Gurunathan B (2013) Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus. Bull Mater Sci 36(7):1201–1205

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47(2):160–164

    Article  PubMed  CAS  Google Scholar 

  • Bhargava A, Jain N, Khan MA, Pareek V, Dilip RV, Panwar J (2016) Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J Environ Manag 183:22–32

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37(2):105–108

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B: Biointerfaces 117:199–205

    Article  PubMed  CAS  Google Scholar 

  • Chitra K, Annadurai G (2013) Bioengineered silver nanobowls using Trichoderma viride and its antibacterial activity against Gram-positive and Gram-negative bacteria. J Nanostruct Chem 3(1):9

    Article  Google Scholar 

  • Dameron CT, Reeses RN, Mehra RK, Kortan AR, Carrol PJ, Steigerwald ML, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • De la Calle I, Menta M, Séby F (2016) Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: a review. Spectrochim Acta Part B At Spectrosc 125:66–96

    Article  CAS  Google Scholar 

  • Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA-F, Bahkali AH (2016) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip 30(2):299–304

    Article  CAS  Google Scholar 

  • Fatima F, Bajpai P, Pathak N, Singh S, Priya S, Verma SR (2015) Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol 15(1):52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fatima F, Verma SR, Pathak N, Bajpai P (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Resist 7:88–92

    Article  PubMed  Google Scholar 

  • Gopinath K, Arumugam A (2013) Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Appl Nanosci 4(6):657–662

    Article  CAS  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci 4(3):225–231

    Article  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerfaces 81(2):430–433. https://doi.org/10.1016/j.colsurfb.2010.07.033

    Article  PubMed  CAS  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):1–9

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71(1):133–137

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56(12):1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Jamme J (2016) Optimization of reaction parameters for silver nanoparticles synthesis from Fusarium Oxysporum and determination of silver nanoparticles concentration. J Mater Sci Eng 5(6):6–9

    Google Scholar 

  • Khan NT, Jamme N, Rehman SUA (2016) Optimizing physioculture conditions for the synthesis of silver nanoparticles from Aspergillus niger. J Nanomed Nanotechnol 7(5):7–10

    Google Scholar 

  • Korbekandi H, Ashari Z, Iravani S, Abbasi S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12(3):289–298

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, Nautiyal CS (2016) Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nanoparticles. Sci Rep 6.(February:27575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications? An updated report. Saudi Pharm J 24(4):473–484

    Article  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  PubMed  CAS  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466–476

    Article  PubMed  CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(20):35–44

    CAS  Google Scholar 

  • Metuku RP, Pabba S, Burra S, Hima Bindu NSVSSSL, Gudikandula K, Singara Charya M (2013) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. 3 Biotechnol 4(3):227–234

    Google Scholar 

  • Mishra A, Tripathy SK, Yun SI (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47(5):701–711

    Article  CAS  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  PubMed  CAS  Google Scholar 

  • Mohamed YM, Azzam AM, Amin BH, Safwat NA (2015) Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol 14(14):1234–1241

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 6(2):132

    Article  PubMed  PubMed Central  Google Scholar 

  • Packiavathy IASV, Priya S, Pandian SK, Ravi AV (2014) Inhibition of biofilm development of uropathogens by curcumin – an anti-quorum sensing agent from Curcuma longa. Food Chem 148:453–460

    Article  PubMed  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5)

    Google Scholar 

  • Patil MP, Kim G-D (2016) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101:79–92

    Article  PubMed  CAS  Google Scholar 

  • Pavani KV, Sunil K, Sangameswaran B (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61(1):61–63

    PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticle 2014 1–8, Article ID 963961, https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing(ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Quester K, Avalos-Borja M, Castro-Longoria E (2016) Controllable biosynthesis of small silver nanoparticles using fungal extract. J Biomater Nanobiotechnol 7(2):118–125

    Article  CAS  Google Scholar 

  • Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2016.11.011

  • Rai M, Yadav P, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai M, Bridge PD (eds) Applied mycology. CABI Publication, Wallingford, pp 258–267

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(2):48–57

    Article  CAS  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(14):3482–3489

    Article  PubMed  CAS  Google Scholar 

  • Saglam N, Yesilada O, Cabuk A, Sam M, Saglam S, Ilk S, Gurel E (2016) Innovation of strategies and challenges for fungal nanobiotechnology. Springer, Cham, pp 25–47

    Google Scholar 

  • Salvadori MR, Ando RA, Oller Nascimento CA, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. Mishra YK, ed. PLoS One 10(6):e0129799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandana Mala JG, Rose C (2013) Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 170(1):73–78

    PubMed  Google Scholar 

  • Sarsar V, Selwal MK, Selwal KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J Saudi Chem Soc 19(6):682–688

    Article  Google Scholar 

  • Saxena J, Sharma PK, Sharma MM, Singh A (2016) Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Spring 5:861

    Article  CAS  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27(5):1464–1469

    Article  PubMed  CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308. https://doi.org/10.3390/ma8115377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium Chrysogenum. Int J Nanosci Nanotechnol 7(2):102–105

    Google Scholar 

  • Sheikhloo Z, Salouti M (2012) Intracellular biosynthesis of gold nanoparticles by fungus Phoma macrostoma. Synth React Inorg, Met Nano-Metal Chem 42(1):65–67

    Article  CAS  Google Scholar 

  • Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci 22(4):661–665

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016b) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11(1):482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:408021

    PubMed  PubMed Central  Google Scholar 

  • Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L (2016) Is neurotoxicity of metallic nanoparticles the cascades of oxidative stress? Nanoscale Res Lett 11(1):291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7

    Google Scholar 

  • Suresh AK (2014) Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. Spectrochim Acta – Part A Mol Biomol Spectrosc 130:344–349

    Article  CAS  Google Scholar 

  • Syed A, Ahmad A (2013) Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 106:41–47

    Article  CAS  Google Scholar 

  • Szafrański SP, Winkel A, Stiesch M (2017) The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 205:29–44. https://doi.org/10.1016/j.jbiotec.2017.01.002

    Article  CAS  Google Scholar 

  • Tanzil AH, Sultana ST, Saunders SR, Shi L, Marsili E, Beyenal H (2016) Biological synthesis of nanoparticles in biofilms. Enzym Microb Technol 95:4–12

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R (2013) Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart 2013:1–4

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 2013:1–5

    Google Scholar 

  • Tidke PR, Gupta I, Gade AK, Rai M (2014) Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis. IEEE Trans Nanobiosci 13(4):397–402

    Article  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40

    Article  PubMed  CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120

    Article  PubMed  CAS  Google Scholar 

  • Zinjarde SS (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3(1):74–81. https://doi.org/10.4103/2229-5186.94314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhardha Busi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Busi, S., Paramanantham, P. (2018). Metal and Metal Oxide Mycogenic Nanoparticles and Their Application As Antimicrobial and Antibiofilm Agents. In: Prasad, R., Kumar, V., Kumar, M., Wang, S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8666-3_10

Download citation

Publish with us

Policies and ethics