Skip to main content

Classification of Hyperspectral Imagery Using Random Forest

  • Conference paper
  • First Online:
Smart and Innovative Trends in Next Generation Computing Technologies (NGCT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 827))

Included in the following conference series:

Abstract

In this paper the classification of hyperspectral images is investigated by using a supervised approach. The spectral feature are extracted with well known decision boundary feature extraction (DBFE) and non-parametric weighted feature extraction (NWFE) techniques. The most informative features are fed to random forest (RF) classifier to perform pixel-wise classification. The experiments are carried out on two benchmark hyperspectral images. The results show that RF classifier generates good classification accuracies for hyperspectral image with smaller execution time. Among feature extraction techniques, DBFE has produced better results than NWFE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Rojo-Alvarez, J., Martinez-Ramon, M.: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 46(6), 1822–1835 (2008)

    Article  Google Scholar 

  2. Heinz, D., Davidson, C., Ben-David, A.: Temporal-spectral detection in long-wave IR hyperspectral imagery. IEEE Sens. J. 10(3), 509–517 (2010)

    Article  Google Scholar 

  3. Kumar, B., Dikshit, O.: Spectral contextual classification of hyperspectral imagery with probabilistic relaxation labeling. IEEE Trans. Cybern. 47, 4380–4391 (2017). https://doi.org/10.1109/tcyb.2016.2609882

    Article  Google Scholar 

  4. Diwaker, Chaudhary, M.K., Tripathi, P., Bhatt, A., Saxena, A.: A comparative performance analysis of feature extraction techniques for hyperspectral image classification. Int. J. Softw. Eng. Appl. 10(12), 179–188 (2016)

    Google Scholar 

  5. Lee, C., Landgrebe, D.A.: Feature extraction based on decision boundaries. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 388–400 (1993)

    Article  Google Scholar 

  6. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  7. Chang, C.-I., Du, Q.: Interference and noise adjusted principal components analysis. IEEE Trans. Geosci. Remote Sens. 37(5), 2387–2396 (1999)

    Article  Google Scholar 

  8. Kumar, B., Dikshit, O.: Spectral-spatial classification of hyperspectral imagery based on moment invriants. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8(6), 2457–2463 (2015)

    Article  Google Scholar 

  9. Chang, C.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer, Norwell (2003)

    Book  Google Scholar 

  10. Lee, C., Landgrebe, D.A.: Decision boundary feature extraction for non-parametric classification. https://doi.org/10.1109/21.229456

  11. Landgrebe, D.A.: Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken (2003)

    Book  Google Scholar 

  12. Kendall, M.G.: A Course in the Geometry of n-Dimensions. Dover, New York (1961)

    MATH  Google Scholar 

  13. Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  Google Scholar 

  14. Bhatt, A.K., Pant, D., Singh, R.: An analysis of the performance of artificial neural network technique for apple classification. AI Soc. 29, 103–111 (2014)

    Article  Google Scholar 

  15. Quesada-Barriuso, P., Argüello, F., Heras, D.B.: Spectral-spatial classification of hyperspectral images using wavelets and extended morphological profiles. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(4), 1177–1185 (2014)

    Article  Google Scholar 

  16. Bhatt, A.K., Pant, D.: Automatic apple grading model development based on back propagation neural network and machine vision, and its performance evaluation. AI Soc. 30, 45–56 (2015)

    Article  Google Scholar 

  17. Bhatt A.K., Saxena, A., Datt, G.: An Investigation of artificial neural network based prediction systems in rain forecasting. Int. J. Recent Innov. Trends Comput. Commun. 3(8) (2015). (ISSN 2321-8169)

    Google Scholar 

  18. Diwaker, Dutta, M.: Assessment of feature extraction techniques for classification of hyperspectrral imagery. In: IEEE International Conference on Advances in Computer Engineering and Applications (ICACEA), 978-1-4673-6911 (2015)

    Google Scholar 

Download references

Acknowledgement

Authors are very thankful to Dr. David Landgrebe, Purdue University, for providing Multispec tool and Dr. Paolo Gamba, Professor at PU, Italy, for providing Hyperspectral dataset used in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwaker Mourya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mourya, D., Bhatt, A. (2018). Classification of Hyperspectral Imagery Using Random Forest. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 827. Springer, Singapore. https://doi.org/10.1007/978-981-10-8657-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8657-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8656-4

  • Online ISBN: 978-981-10-8657-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics