Skip to main content

Gaussian Scale Factor Based Differential Evolution

  • Conference paper
  • First Online:
Smart and Innovative Trends in Next Generation Computing Technologies (NGCT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 827))

Included in the following conference series:

  • 1337 Accesses

Abstract

Differential Evolution (DE) is a easy and basic populace based probabilistic approach for global optimization. It has reportedly outperformed very well as compared to different nature inspired algorithms like Genetic algorithm (GA), Particle swarm optimization (PSO) when tested over both benchmark and real world problems. In DE algorithm there are crossover rate (CR), and scale factor (SF) are two control parameters, which play a crucial role to retain the proper equilibrium betwixt intensification and diversification abilities. But, DE, like other probabilistic optimization approaches, sometimes behave prematurely in convergence. Therefore, to retain the proper equilibrium betwixt exploitation and exploration capabilities, we introduce a modified SF in which the Gaussian distribution function and a flexible parameter (N) are introduced in mutation process of DE. The significant advantage of Gaussian distribution is full scale searching. The resulting algorithm is named as Gaussian scale factor based differential evolution GSFDE algorithm. To prove the efficiency and efficacy of GSFDE, it is tested over 20 benchmark optimization problems and the results are compared with the basic DE and advanced variants of DE namely, Gbest-guided differential evolution (Gbest DE), L‘evy Flight based Local Search in Differential Evolution (LFDE) and some swarm intelligence based algorithms like Modified artificial bee colony algorithm (MABC), Best-so-far ABC (BSFABC), Particle swarm optimization (PSO), and spider monkey optimization (SMO). The obtained results depict that GSFDE is a competent in the field of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4), 635–672 (2005)

    Article  MathSciNet  Google Scholar 

  2. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2888–2901 (2011)

    Article  Google Scholar 

  3. Bansal, J.C., Sharma, H., Jadon, S.S., Clerc, M.: Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 6(1), 31–47 (2014)

    Article  Google Scholar 

  4. Biswas, S., Kundu, S., Das, S., Vasilakos, A.V.: Teaching and learning best differential evolution with self adaptation for real parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1115–1122. IEEE (2013)

    Google Scholar 

  5. Chakraborty, U.K.: Advances in Differential Evolution. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68830-3

    Book  MATH  Google Scholar 

  6. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  7. Das, S., Konar, A.: Two-dimensional IIR filter design with modern search heuristics: a comparative study. Int. J. Comput. Intell. Appl. 6(03), 329–355 (2006)

    Article  Google Scholar 

  8. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, Hoboken (2007)

    Book  Google Scholar 

  9. Fleetwood, K.: An introduction to differential evolution. In: Proceedings of Mathematics and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane, Australia (2004)

    Google Scholar 

  10. Gao, W., Liu, S.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)

    Article  Google Scholar 

  11. Goldberg, D.E.: Genetic and evolutionary algorithms come of age. Commun. ACM 37(3), 113–120 (1994)

    Article  Google Scholar 

  12. Kenndy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press (1995)

    Google Scholar 

  13. Lampinen, J., Zelinka, I., et al.: On stagnation of the differential evolution algorithm. In: Proceedings of MENDEL, pp. 76–83 (2000)

    Google Scholar 

  14. Mokan, M., Sharma, K., Sharma, H., Verma, C.: Gbest guided differential evolution. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. IEEE (2014)

    Google Scholar 

  15. Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 967–974. ACM (2005)

    Google Scholar 

  16. Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Differential evolution methods for unsupervised image classification. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 966–973. IEEE (2005)

    Google Scholar 

  17. Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y., Cheung, Y., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 192–199. Springer, Heidelberg (2005). https://doi.org/10.1007/11596448_28

    Chapter  Google Scholar 

  18. Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: 1996 Biennial Conference of the North American, Fuzzy Information Processing Society, NAFIPS 1996, pp. 524–527. IEEE (1996)

    Google Scholar 

  19. Price, K.V., Storn, R.M., Lampinen, J.A.: The differential evolution algorithm. Diff. Evol.: Pract. Approach Glob. Optim. 37–134 (2005)

    Google Scholar 

  20. Sharma, H., Bansal, J.C., Arya, K.V.: Dynamic scaling factor based differential evolution algorithm. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds.) SocProS 2011. AISC, vol. 130, pp. 73–85. Springer, India (2012). https://doi.org/10.1007/978-81-322-0487-9_8

    Chapter  Google Scholar 

  21. Sharma, H., Jadon, S.S., Bansal, J.C., Arya, K.V.: Lèvy flight based local search in differential evolution. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds.) SEMCCO 2013. LNCS, vol. 8297, pp. 248–259. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03753-0_23

    Chapter  Google Scholar 

  22. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput. - Fusion Found. Methodol. Appl. 10(8), 673–686 (2006)

    Google Scholar 

  23. Weber, M., Tirronen, V., Neri, F.: Scale factor inheritance mechanism in distributed differential evolution. Soft. Comput. 14(11), 1187–1207 (2010)

    Article  Google Scholar 

  24. Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)

    Article  Google Scholar 

  25. Yan, J., Ling, Q., Sun, D.: A differential evolution with simulated annealing updating method. In: 2006 International Conference on Machine Learning and Cybernetics, pp. 2103–2106. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, R., Sharma, H., Sharma, N. (2018). Gaussian Scale Factor Based Differential Evolution. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 827. Springer, Singapore. https://doi.org/10.1007/978-981-10-8657-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8657-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8656-4

  • Online ISBN: 978-981-10-8657-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics