Advertisement

Enhancing Noise-Tolerant Behavior of Traditional Evolutionary and Swarm Algorithms

  • Pratyusha RakshitEmail author
  • Amit Konar
Chapter
Part of the Cognitive Intelligence and Robotics book series (CIR)

Abstract

In the last two chapters, noise handling strategies are proposed to extend the traditional differential evolution (DE), in both single- and multi-objective optimization settings, to proficiently track global optima in noise-induced multimodal fitness landscape(s). This chapter extends the traditional single-objective artificial bee colony (ABC), particle swarm optimization (PSO), and firefly algorithm (FA), and their respective multi-objective counterparts, with the noise handling stratagems already introduced in the previous chapters. These evolutionary and swarm optimization algorithms are selected as the basic algorithms for their wide popularity in the domain of meta-heuristic optimization with respect to computational accuracy and run-time complexity. The objective of this chapter is to study and validate the efficacy of the search dynamics of these well-known evolutionary and swarm algorithms to proficiently identify the global optima in the presence of stochastic noise in the fitness landscape(s). Experiments undertaken on noisy versions of the standard benchmark problems reveal that the extended versions of single- and multi-objective ABC outperform their contenders in most of the cases. The comparative analysis of the extended algorithms on the real-world multi-robot coordination problems in the presence of noisy sensory data also substantiates the quality performance of the proposed noisy versions of single- and multi-objective ABC over its contenders.

Keywords

Noisy optimization Artificial bee colony Particle swarm optimization Firefly algorithm Multi-objective optimization Multi-robot coordination 

References

  1. 1.
    K. Deb, A.P.S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 2, 162–197 (1998)CrossRefGoogle Scholar
  2. 2.
    P. Rakshit, A. Konar, S. Das, Noisy evolutionary optimization algorithms—a comprehensive survey. Swarm Evol. Comput. 33, 18–45 (2017). ElsevierCrossRefGoogle Scholar
  3. 3.
    P. Rakshit, A. Konar, S. Das, L.C. Jain, A.K. Nagar, Uncertainty management in differential evolution induced multiobjective optimization in presence of measurement noise. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 922–937 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Rakshit, A. Konar, Differential evolution for noisy multiobjective optimization. Artif. Intell. 227, 165–189 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Rakshit, A. Konar, Extending multi-objective differential evolution for optimization in presence of noise. Inf. Sci. 305, 56–76 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Rakshit, A. Konar, Non-dominated sorting bee colony optimization in the presence of noise. Soft Comput. 20(3), 1139–1159 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Rakshit, A. Konar, A.K. Nagar, Artificial bee colony induced multi-objective optimization in presence of noise, in Proceedings of IEEE Congress on Evolutionary Computation, 2014, pp. 3176–3183Google Scholar
  8. 8.
    P. Rakshit, A. Konar, A.K. Nagar, Type-2 fuzzy induced non-dominated sorting bee colony for noisy optimization, in Proceedings of IEEE Congress on Evolutionary Computation, 2015, pp. 3176–3183Google Scholar
  9. 9.
    P. Rakshit, A. Konar, A.K. Nagar, Multi-robot box-pushing in presence of measurement noise, in Proceedings of IEEE Congress on Evolutionary Computation, 2016, pp. 4926–4933Google Scholar
  10. 10.
    P. Rakshit, A. Konar, A.K. Nagar, Learning automata induced artificial bee colony for noisy optimization, in Proceedings of IEEE Congress on Evolutionary Computation, 2017, pp. 984–991Google Scholar
  11. 11.
    P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain, A.K. Nagar, Realization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path-planning. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 814–831 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, 2006)Google Scholar
  14. 14.
    U.K. Chakraborty, Advances in Differential Evolution (Springer, Heidelberg, New York, 2008)CrossRefGoogle Scholar
  15. 15.
    S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Robic, B. Philipic, DEMO: differential evolution for multiobjective optimization, in Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, ed. by C.A. Coello Coello, A.H. Aguirre, E. Zitzler. Springer Lecture Notes in Computer Science: Guanajuato, Mexico, vol. 3410, 2005, pp. 520–533Google Scholar
  17. 17.
    P. Rakshit, A.K. Sadhu, A. Halder, A. Konar, R. Janarthanan, Multi-robot box-pushing using differential evolution algorithm for multiobjective optimization, in Proceedings of International Conference on Soft Computing and Problem Solving, vol. 11, 2011, pp. 355–365Google Scholar
  18. 18.
    B. Basturk, D. Karaboga, An artificial bee colony (ABC) algorithm for numeric function optimization, in Proceedings of the IEEE Swarm Intelligence Symposium, 2006Google Scholar
  19. 19.
    D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008). ElsevierCrossRefGoogle Scholar
  20. 20.
    D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 29, 459–471 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39–43Google Scholar
  22. 22.
    J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, vol. IV, 1995, pp. 1942–1948Google Scholar
  23. 23.
    J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in Proceedings of the Conference on Systems, Man, and Cybernetics, 1997, pp. 4104–4109Google Scholar
  24. 24.
    X.S. Yang, “Firefly Algorithms for Multimodal Optimization”, Stochastic Algorithms: Foundations and Applications (Springer, Berlin, Heidelberg, 2009), pp. 169–178CrossRefGoogle Scholar
  25. 25.
    A.G. Roy, P. Rakshit, A. Konar, S. Bhattacharya, E. Kim, A.K. Nagar, Adaptive firefly algorithm for nonholonomic motion planning of car-like system, in Proceeding of IEEE Congress on Evolutionary Computation, 2013, pp. 2162–2169Google Scholar
  26. 26.
    P. Rakshit, A. Konar, A. Chowdhury, E. Kim, A.K. Nagar, Multi-objective evolutionary approach of ligand design for protein-ligand docking problem, in Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 237–244Google Scholar
  27. 27.
    P. Rakshit, A.K. Sadhu, P. Bhattacharjee, A. Konar, R. Janarthanan, Multi-robot box-pushing using non-dominated sorting bee colony optimization algorithm, in Proceedings of Swarm, Evolutionary and Memetic Computing Conference, vol. 7076, Dec 2011, pp. 601–609Google Scholar
  28. 28.
    C.A. Coello Coello, M. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in Proceedings of IEEE Congress of Evolutionary Computation, vol. 2, May 2002, pp. 1051–1056Google Scholar
  29. 29.
    C.A. Coello Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Chowdhury, P. Rakshit, A. Konar, Prediction of protein-protein interaction network using a multi-objective optimization approach. J. Bioinform. Comput. Biol. 14(3), 1650008–1650041 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Lakshmivarahan, M.A.L. Thathachar, Absolutely expedient learning algorithms for stochastic automata. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 3, 281–286 (1973)MathSciNetzbMATHGoogle Scholar
  32. 32.
    K.S. Narendra, M.L.A.A. Thathachar, Learning automata-a survey. IEEE Trans. Syst. Man Cybern. 4, 323–334 (1974)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A.D. Pietro, L. While, L. Barone, Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, 2004, pp. 1254–1261Google Scholar
  34. 34.
    J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G.H. Díaz, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, 2013Google Scholar
  35. 35.
    G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)CrossRefGoogle Scholar
  36. 36.
    D.E. Knuth, in The art of computer programming. Seminumerical Algorithms, vol. 2 (1981)Google Scholar
  37. 37.
    W. Hörmann, J. Leydold, G. Derflinger, General principles in random variate generation, in Automatic Nonuniform Random Variate Generation (Springer, Berlin Heidelberg, 2004), pp. 13–41CrossRefGoogle Scholar
  38. 38.
    G. Marsaglia, W.W. Tsang, The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000)CrossRefGoogle Scholar
  39. 39.
    J.H. Ahrens, U. Dieter, Generating gamma variates by a modified rejection technique. Commun. ACM 25(1), 47–54 (1982)MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Bolte, Linear Congruential Generators, Wolfram Demonstrations ProjectGoogle Scholar
  41. 41.
    Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective optimization test instances for the cec 2009 special session and competition. Working report, CES-887, School of Computer Science and Electrical Engineering, University of Essex, 2008Google Scholar
  42. 42.
    P. Rakshit, A. Konar, S. Das, A.K. Nagar, ABC-TDQL: an adaptive memetic algorithm, in IEEE Workshop on Hybrid Intelligent Models and Applications, 2013, pp. 35–42Google Scholar
  43. 43.
    J. De, N. Biswas, P. Rakshit, R.S. Sen, B. Oraon, G. Majumdar, Computation and optimisation of electroless Ni-Cu-P coating using evolutionary algorithms. ARPN J. Eng. Appl. Sci. 10(5) (2015)Google Scholar
  44. 44.
    A. Chowdhury, P. Rakshit, A. Konar, A.K. Nagar, A multi-objective evolutionary approach to predict protein-protein interaction network, in IEEE Congress on Evolutionary Computation, 2015, pp. 1628–1635Google Scholar
  45. 45.
    X. Li, Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)CrossRefGoogle Scholar
  46. 46.
    P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A.K. Nagar, Multi-robot path-planning using artificial bee colony optimization algorithm, in World Congress on Nature and Biologically Inspired Computing, 2011, pp. 219–224Google Scholar
  47. 47.
    J. Chakraborty, A. Konar, U.K. Chakraborty, L.C. Jain, Distributed co-operative multi robot path-planning using differential evolution, in IEEE Congress on Evolutionary Computation, 2009, pp. 718–725Google Scholar
  48. 48.
    P. Rakshit, A. Konar, “Learning Automata and Niching Induced Noisy Optimization for Multi-Robot Path-Planning,” Principles in Noisy Optimization: ​Applied to Multi-Agent Coordination, Springer, 2018Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations