Advertisement

Foundation in Evolutionary Optimization

  • Pratyusha RakshitEmail author
  • Amit Konar
Chapter
Part of the Cognitive Intelligence and Robotics book series (CIR)

Abstract

Evolutionary algorithms (EAs) have witnessed a radically divergent perspective regarding their potential to optimize complex real-world non-differentiable numerical functions. Since its foundation in 1973, researchers have taken a keen interest in ameliorating the optimization performance of the basic EA, leading to many variants of the basic algorithm with enhanced performance. This chapter presents a gentle introduction to the basic concepts of EA with its application to single and multi-objective, constrained optimization problems. It begins with formal definitions of optimization and elaborately discusses the traditional calculus-based optimization policies highlighting their limitations to handle non-differentiable multimodal optimization problems. Gradually, the chapter explores the scope of EAs to solve such non-differentiable real-world dynamic optimization problems using the population-based meta-heuristic search strategy. The chapter next focuses on three major variants of EA, including genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO). In addition, it provides an overview of the multifaceted literature on engineering applications of EA.

Keywords

Calculus-based optimization Evolutionary optimization Multi-objective optimization Genetic algorithm Differential evolution Particle swarm optimization 

References

  1. 1.
    S. Das, A. Abraham, A. Konar, Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. Adv. Comput. Intell. Ind. Syst. (2008), pp. 1–38Google Scholar
  2. 2.
    E.K.P. Chong, S.H. Zak, An Introduction to Optimization, vol. 76 (Wiley, New York, 2013)Google Scholar
  3. 3.
    O. Kramer, A Brief Introduction to Continuous Evolutionary Optimization (Springer International Publishing, Cham, 2014)zbMATHCrossRefGoogle Scholar
  4. 4.
    R. Sarker, M. Mohammadian, X. Yao, Evolutionary Optimization, vol. 48 (Springer Science & Business Media, 2002)Google Scholar
  5. 5.
    R. Schoenberg, Optimization with the Quasi-Newton Method (Aptech Systems Maple Valley, WA, 2001), pp. 1–9Google Scholar
  6. 6.
    J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992)Google Scholar
  7. 7.
    A. Konar, Computational Intelligence: Principles, Techniques and Applications (Springer Science & Business Media, 2006)Google Scholar
  8. 8.
    P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain, A.K. Nagar, Realization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planning. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 814–831 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, 2006)Google Scholar
  11. 11.
    U.K. Chakraborty, Advances in Differential Evolution (Springer, Heidelberg, 2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing (Springer, US, 2006), pp. 187–219Google Scholar
  14. 14.
    J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning (Springer, US, 2011), pp. 760–766Google Scholar
  15. 15.
    I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (Frommann-Holzbog, Stuttgart, 1973) (Google Scholar, 1994)Google Scholar
  16. 16.
    T. Bäck, D.B. Fogel, Z. Michalewicz (eds.), Evolutionary Computation 1: Basic Algorithms and Operators, vol. 1 (CRC press, 2000)Google Scholar
  17. 17.
    E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications (1999)Google Scholar
  18. 18.
    A. Chowdhury, P. Rakshit, A. Konar, Protein-protein interaction network prediction using stochastic learning automata induced differential evolution. Appl. Soft Comput. 49, 699–724 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  20. 20.
    J.D. Schaffer, Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms (Vanderbilt Univ., Nashville, 1985)Google Scholar
  21. 21.
    C.M. Fonseca, P.J. Fleming, Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. ICGA 93(July), 416–423 (1993)Google Scholar
  22. 22.
    J. Horn, N. Nafpliotis, D.E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization, in IEEE World Congress on Computational Intelligence (1994), pp. 82–87Google Scholar
  23. 23.
    J. Knowles, D. Corne, The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation, in IEEE Congress on Evolutionary Computation (1999), pp. 98–105Google Scholar
  24. 24.
    E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  25. 25.
    J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G.H. Díaz, Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report 201212 (2013)Google Scholar
  26. 26.
    Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective optimization test instances for the cec 2009 special session and competition. Working Report, CES-887, School of Computer Science and Electrical Engineering, University of Essex (2008)Google Scholar
  27. 27.
    J.R. Schott, Fault tolerant design using single and multi-criteria genetic algorithm optimization. ME thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, May, 1995Google Scholar
  28. 28.
    D.A. van Veldhuizen, Multiobjective Evolutionary Algorithms: Classification, Analysis, and New Innovations, Ph.D. thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999Google Scholar
  29. 29.
    C.A. Coello Coello, B. Lamont, D.A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective Problems. Genetic and Evolutionary Computation Series, 2nd edn. (2007)Google Scholar
  30. 30.
    M. Fleischer, The measure of Pareto optima. Applications to multi-objective metaheuristics, in Second International Conference on Evolutionary Multi-criterion Optimization. Lecture Notes in Computer Science, vol. 2632 (Springer, Berlin), Apr 2003, pp. 519–533Google Scholar
  31. 31.
    S.K. Pal, S. Bandyopadhyay, S. Sankar Ray, Evolutionary computation in bioinformatics: a review. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 36(5), 601–615 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Das, S.S. Mullick, P.N. Suganthan, Recent advances in differential evolution—an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, S. Wang, G. Ji, A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    LdS Coelho, V.C. Mariani, Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans. Power Syst. 21(2), 989–996 (2006)CrossRefGoogle Scholar
  37. 37.
    L. Lakshminarasimman, S. Subramanian, Applications of differential evolution in power system optimization, in Advances in Differential Evolution (Springer, Berlin, 2008), pp. 257–273Google Scholar
  38. 38.
    N. Noman, H. Iba, Differential evolution for economic load dispatch problems. Electr. Power Syst. Res. 78(8), 1322–1331 (2008)CrossRefGoogle Scholar
  39. 39.
    X. Yuan, L. Wang, Y. Zhang, Y. Yuan, A hybrid differential evolution method for dynamic economic dispatch with valve-point effects. Expert Syst. Appl. 36(2), 4042–4048 (2009)CrossRefGoogle Scholar
  40. 40.
    J.P. Chiou, A variable scaling hybrid differential evolution for solving large-scale power dispatch problems. IET Gener. Transm. Distrib. 3(2), 154–163 (2009)CrossRefGoogle Scholar
  41. 41.
    S. Ganguly, N.C. Sahoo, D. Das, Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets Syst. 213, 47–73 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Komsiyah, Computational methods of Gaussian particle swarm optimization (GPSO) and Lagrange multiplier on economic dispatch issues (case study on electrical system of Java-Bali IV area), in EPJ Web of Conferences, vol. 68 (2014), pp. 00014CrossRefGoogle Scholar
  43. 43.
    H.R. Cai, C.Y. Chung, K.P. Wong, Application of differential evolution algorithm for transient stability constrained optimal power flow. IEEE Trans. Power Syst. 23(2), 719–728 (2008)CrossRefGoogle Scholar
  44. 44.
    C.H. Liang, C.Y. Chung, K.P. Wong, X.Z. Duan, Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition. IEEE Trans. Power Syst. 22(1), 249–257 (2007)CrossRefGoogle Scholar
  45. 45.
    M. Varadarajan, K.S. Swarup, Solving multi-objective optimal power flow using differential evolution. IET Gener. Transm. Distrib. 2(5), 720–730 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Basu, Optimal power flow with FACTS devices using differential evolution. Int. J. Electr. Power Energy Syst. 30(2), 150–156 (2008)CrossRefGoogle Scholar
  47. 47.
    S. Sayah, K. Zehar, Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers. Manag. 49(11), 3036–3042 (2008)CrossRefGoogle Scholar
  48. 48.
    A.A. El Ela, M.A.Abido Abou, S.R. Spea, Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 80(7), 878–885 (2010)CrossRefGoogle Scholar
  49. 49.
    G.Y. Yang, Z.Y. Dong, K.P. Wong, A modified differential evolution algorithm with fitness sharing for power system planning. IEEE Trans. Power Syst. 23(2), 514–522 (2008)CrossRefGoogle Scholar
  50. 50.
    S. Kannan, P. Murugan, Solutions to transmission constrained generation expansion planning using differential evolution. Int. Trans. Electr. Energy Syst. 19(8), 1033–1039 (2009)Google Scholar
  51. 51.
    T. Sum-Im, G.A. Taylor, M.R. Irving, Y.H. Song, Differential evolution algorithm for static and multistage transmission expansion planning. IET Gener. Transm. Distrib. 3(4), 365–384 (2009)CrossRefGoogle Scholar
  52. 52.
    C.F. Chang, J.J. Wong, J.P. Chiou, C.T. Su, Robust searching hybrid differential evolution method for optimal reactive power planning in large-scale distribution systems. Electr. Power Syst. Res. 77(5), 430–437 (2007)CrossRefGoogle Scholar
  53. 53.
    J.P. Chiou, C.F. Chang, C.T. Su, Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Trans. Power Syst. 19(4), 1794–1800 (2004)CrossRefGoogle Scholar
  54. 54.
    J.P. Chiou, C.F. Chang, C.T. Su, Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems. IEEE Trans. Power Syst. 20(2), 668–674 (2005)CrossRefGoogle Scholar
  55. 55.
    C.T. Su, C.S. Lee, Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans. Power Deliv. 18(3), 1022–1027 (2003)CrossRefGoogle Scholar
  56. 56.
    P. Kitak, I. Ticar, J. Pihler, A. Glotic, J. Popovic, O. Biro, K. Preis, Application of the hybrid multiobjective optimization methods on the capacitive voltage divider. IEEE Trans. Magn. 45(3), 1594–1597 (2009)CrossRefGoogle Scholar
  57. 57.
    A. Qing, Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propag. 51(6), 1251–1262 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    A. Qing, Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES). IEEE Trans. Antennas Propag. 52(5), 1223–1229 (2004)CrossRefGoogle Scholar
  59. 59.
    S. Yang, A. Qing, Design of high-power millimeter-wave TM/sub 01/-TE/sub 11/Mode converters by the differential evolution algorithm. IEEE Trans. Plasma Sci. 33(4), 1372–1376 (2005)CrossRefGoogle Scholar
  60. 60.
    M. Toman, G. Stumberger, D. Dolinar, Parameter identification of the Jiles-Atherton hysteresis model using differential evolution. IEEE Trans. Magn. 44(6), 1098–1101 (2008)CrossRefGoogle Scholar
  61. 61.
    G. Stumberger, S. Seme, B. Stumberger, D. Dolinar, Determining magnetically nonlinear characteristics of transformers and iron core inductors by differential evolution. IEEE Trans. Magn. 44(6), 1570–1573 (2008)CrossRefGoogle Scholar
  62. 62.
    T. Marcic, G. Stumberger, B. Stumberger, M. Hadziselimovic, P. Virtic, Determining parameters of a line-start interior permanent magnet synchronous motor model by the differential evolution. IEEE Trans. Magn. 44(11), 4385–4388 (2008)CrossRefGoogle Scholar
  63. 63.
    Y. Li, L. Rao, R. He, G. Xu, Q. Wu, W. Yan, G. Dong, Q. Yang, A novel combination method of electrical impedance tomography inverse problem for brain imaging. IEEE Trans. Magn. 41(5), 1848–1851 (2005)CrossRefGoogle Scholar
  64. 64.
    A. Qing, X. Xu, Y.B. Gan, Anisotropy of composite materials with inclusion with orientation preference. IEEE Trans. Antennas Propag. 53(2), 737–744 (2005)CrossRefGoogle Scholar
  65. 65.
    K.A. Michalski, Electromagnetic imaging of elliptical–cylindrical conductors and tunnels using a differential evolution algorithm. Microwave and Optical Technology Letters 28(3), 164–169 (2001)CrossRefGoogle Scholar
  66. 66.
    K.A. Michalski, Electromagnetic imaging of circular–cylindrical conductors and tunnels using a differential evolution algorithm. Microw. Opt. Technol. Lett. 27(5), 330–334 (2000)CrossRefGoogle Scholar
  67. 67.
    A. Breard, G. Perrusson, D. Lesselier, Hybrid differential evolution and retrieval of buried spheres in subsoil. IEEE Geosci. Remote Sens. Lett. 5(4), 788–792 (2008)CrossRefGoogle Scholar
  68. 68.
    D.G. Kurup, M. Himdi, A. Rydberg, Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Trans. Antennas Propag. 51(9), 2210–2217 (2003)CrossRefGoogle Scholar
  69. 69.
    S. Caorsi, A. Massa, M. Pastorino, A. Randazzo, Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans. Antennas Propag. 53(1), 372–376 (2005)CrossRefGoogle Scholar
  70. 70.
    A. Massa, M. Pastorino, A. Randazzo, Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution method. IEEE Antennas Wirel. Propag. Lett. 5(1), 155–158 (2006)CrossRefGoogle Scholar
  71. 71.
    S. Yang, Z. Nie, Mutual coupling compensation in time modulated linear antenna arrays. IEEE Trans. Antennas Propag. 53(12), 4182–4185 (2005)CrossRefGoogle Scholar
  72. 72.
    Y. Chen, S. Yang, Z. Nie, The application of a modified differential evolution strategy to some array pattern synthesis problems. IEEE Trans. Antennas Propag. 56(7), 1919–1927 (2008)CrossRefGoogle Scholar
  73. 73.
    S. Yang, Y.B. Gan, A. Qing, Sideband suppression in time-modulated linear arrays by the differential evolution algorithm. IEEE Antennas Wirel. Propag. Lett. 1(1), 173–175 (2002)CrossRefGoogle Scholar
  74. 74.
    S.L. Cheng, C. Hwang, Optimal approximation of linear systems by a differential evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 698–707 (2001)CrossRefGoogle Scholar
  75. 75.
    Hassan Yousefi, Heikki Handroos, Azita Soleymani, Application of differential evolution in system identification of a servo-hydraulic system with a flexible load. Mechatronics 18(9), 513–528 (2008)CrossRefGoogle Scholar
  76. 76.
    H. Tang, S. Xue, C. Fan, Differential evolution strategy for structural system identification. Comput. Struct. 86(21), 2004–2012 (2008)CrossRefGoogle Scholar
  77. 77.
    W.D. Chang, Parameter identification of Chen and Lü systems: a differential evolution approach. Chaos, Solitons Fractals 32(4), 1469–1476 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    IL. Lopez Cruz, L.G. Van Willigenburg, G. Van Straten, Efficient differential evolution algorithms for multimodal optimal control problems. Appl. Soft Comput. 3(2), pp. 97–122 (2003)CrossRefGoogle Scholar
  79. 79.
    I.L.L. Cruz, L.G. Van Willigenburg, G. Van Straten, Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable control weight gradient algorithms. Comput. Electron. Agric. 40(1), 179–197 (2003)CrossRefGoogle Scholar
  80. 80.
    A. Nobakhti, H. Wang, A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier. Appl. Soft Comput. 8(1), 350–370 (2008)CrossRefGoogle Scholar
  81. 81.
    M.W. Iruthayarajan, S. Baskar, Evolutionary algorithms based design of multivariable PID controller. Expert Syst. Appl. 36(5), 9159–9167 (2009)CrossRefGoogle Scholar
  82. 82.
    K. Sundaravadivu, B. Arun, K. Saravanan, Design of fractional order PID controller for liquid level control of spherical tank, in IEEE International Conference on Control System, Computing and Engineering (2011), pp. 291–295Google Scholar
  83. 83.
    G. Štimac, S. Braut, R. Žigulić, Comparative analysis of PSO algorithms for PID controller tuning. Chin. J. Mech. Eng. 27(5), 928–936 (2014)CrossRefGoogle Scholar
  84. 84.
    W.D. Chang, C.Y. Chen, PID controller design for MIMO processes using improved particle swarm optimization. Circuits Syst. Signal Process. 33(5), 1473–1490 (2014)MathSciNetCrossRefGoogle Scholar
  85. 85.
    S. Aydin, H. Temeltas, Fuzzy-differential evolution algorithm for planning time-optimal trajectories of a unicycle mobile robot on a predefined path. Adv. Robot. 18(7), 725–748 (2004)CrossRefGoogle Scholar
  86. 86.
    J. Chakraborty, A. Konar, L.C. Jain, U.K. Chakraborty, Cooperative multi-robot path planning using differential evolution. J. Intel. Fuzzy Syst. 20(1, 2), pp. 13–27 (2009)Google Scholar
  87. 87.
    Y. Cai, S.X. Yang, An improved PSO-based approach with dynamic parameter tuning for cooperative target searching of multi-robots, in IEEE World Automation Congress (2014), pp. 616–621Google Scholar
  88. 88.
    F. Neri, Ferrante, Memetic compact differential evolution for Cartesian robot control. IEEE Comput. Intell. Mag. 5(2), pp. 54–65 (2010)CrossRefGoogle Scholar
  89. 89.
    P. Rakshit, A. Konar, S. Das, L.C. Jain, A.K. Nagar, uncertainty management in differential evolution induced multi-objective optimization in presence of measurement noise. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 922–937 (2014)CrossRefGoogle Scholar
  90. 90.
    A.K. Sadhu, P. Rakshit, A. Konar, A modified imperialist competitive algorithm for multi-robot stick-carrying application. Robot. Auton. Syst. 76, 15–35 (2016)CrossRefGoogle Scholar
  91. 91.
    R.R. Sahoo, P. Rakshit, MdT Haider, S. Swarnalipi, B.K. Balabantaray, S. Mohapatra, Navigational path planning of multi-robot using honey bee mating optimization algorithm (HBMO). Int. J. Comput. Appl. 27(11), 1–8 (2011)Google Scholar
  92. 92.
    P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A.K. Nagar, Multi-robot path-planning using artificial bee colony optimization algorithm, in Nature and Biologically Inspired Computing (2011), pp. 219–224Google Scholar
  93. 93.
    P. Rakshit, A.K. Sadhu, P. Bhattacharjee, A. Konar, R. Janarthanan, Multi-robot box-pushing using non-dominated sorting bee colony optimization algorithm, in Swarm, Evolutionary and Memetic Computing Conference (2011), pp. 601–609Google Scholar
  94. 94.
    P. Rakshit, A.K. Sadhu, A. Halder, A. Konar, R. Janarthanan, Multi-robot box-pushing using differential evolution algorithm for multiobjective optimization, in International Conference on Soft Computing and Problem Solving (2011), pp. 355–365Google Scholar
  95. 95.
    A. Jati, G. Singh, P. Rakshit, A. Konar, E. Kim, A.K. Nagar, A hybridization of improved harmony search and bacterial foraging for multi-robot motion planning, in IEEE Congress on Evolutionary Computation (2012), pp. 1–8Google Scholar
  96. 96.
    P. Rakshit, D. Banerjee, A. Konar, R. Janarthanan, An adaptive memetic algorithm for multi-robot path-planning, in Swarm, Evolutionary and Memetic Computing Conference (2012), pp. 248–258Google Scholar
  97. 97.
    A.G. Roy, P. Rakshit, A. Konar, S. Bhattacharya, E. Kim, A.K. Nagar, Adaptive firefly algorithm for nonholonomic motion planning of car-like system, in IEEE Congress on Evolutionary Computation (2013), pp. 2162–2169Google Scholar
  98. 98.
    P. Rakshit, A. Konar, A.K Nagar, Multi-robot box-pushing in presence of measurement noise, in IEEE Congress on Evolutionary Computation (2016), pp. 4926–4933Google Scholar
  99. 99.
    P.P. Menon, J. Kim, D.G. Bates, I. Postlethwaite, Clearance of nonlinear flight control laws using hybrid evolutionary optimization. IEEE Trans. Evol. Comput. 10(6), 689–699 (2006)CrossRefGoogle Scholar
  100. 100.
    K.A. Danapalasingam, Robust autonomous helicopter stabilizer tuned by particle swarm optimization. Int. J. Pattern Recognit. Artif. Intell. 28(1), 1459002 (2014)CrossRefGoogle Scholar
  101. 101.
    A.G. Roy, N.K. Peyada, Aircraft parameter estimation using hybrid neuro fuzzy and artificial bee colony optimization (HNFABC) Algorithm. Aerosp. Sci. Technol. (2017)Google Scholar
  102. 102.
    A.G. Roy, N.K. Peyada, Stable and unstable aircraft parameter estimation in presence of noise using intelligent estimation technique, in AIAA Atmospheric Flight Mechanics Conference (2016), pp. 3708Google Scholar
  103. 103.
    A.G. Roy, N.K. Peyada, Longitudinal aircraft parameter estimation using neuro-fuzzy and genetic algorithm based method, in AIAA Atmospheric Flight Mechanics Conference (2017), pp. 3896Google Scholar
  104. 104.
    N. Noman, H. Iba, Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(4), 634–647 (2007)CrossRefGoogle Scholar
  105. 105.
    R. Xu, G.K. Venayagamoorthy, D.C. Wunsch, Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw. 20(8), 917–927 (2007)zbMATHCrossRefGoogle Scholar
  106. 106.
    S. Ando, H. Iba, Inference of gene regulatory model by genetic algorithms, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2001), pp. 712–719Google Scholar
  107. 107.
    N. Behera, V. Nanjundiah, Transgene regulation in adaptive evolution: a genetic algorithm model. J. Theor. Biol. 188(2), 153–162 (1997)CrossRefGoogle Scholar
  108. 108.
    S. Ando, H. Iba, Quantitative modeling of gene regulatory network. Genome Inform. 11, 278–280 (2000)Google Scholar
  109. 109.
    P. Rakshit, P. Das, A. Konar, M. Nasipuri, R. Janarthanan, A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using invasive weed and artificial bee colony optimization algorithm,” in IEEE International Conference on Recent Advances in Information Technology (2012), pp. 385–391Google Scholar
  110. 110.
    P. Das, P. Rakshit, A. Konar, M. Nasipuri, R. Janarthanan, A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using artificial bee colony optimization algorithm, in Recent Trends in Information Systems (2011), pp. 42–47Google Scholar
  111. 111.
    H.K. Tsai, J.M. Yang, C.Y. Kao, Applying genetic algorithms to finding the optimal gene order in displaying the microarray data, in Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation (2002), pp. 610–617Google Scholar
  112. 112.
    H.K. Tsai, J.M. Yang, Y.F. Tsai, C.Y. Kao, An evolutionary approach for gene expression patterns. IEEE Trans. Inf Technol. Biomed. 8(2), 69–78 (2004)CrossRefGoogle Scholar
  113. 113.
    A.S. Wu, I. Garibay, The proportional genetic algorithm: Gene expression in a genetic algorithm. Genet. Program Evolvable Mach. 3(2), 157–192 (2002)zbMATHCrossRefGoogle Scholar
  114. 114.
    C. Notredame, D.G. Higgins, SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res. 24(8), 1515–1524 (1996)CrossRefGoogle Scholar
  115. 115.
    C. Zhang, A.K.C. Wong, A genetic algorithm for multiple molecular sequence alignment. Bioinformatics 13(6), 565–581 (1997)CrossRefGoogle Scholar
  116. 116.
    L. Davis, Adapting operator probabilities in genetic algorithms, in Proceedings of 3rd International Conference on Genetic Algorithms (1989), pp. 61–69Google Scholar
  117. 117.
    J.D. Szustakowski, Z. Weng, “Protein structure alignment using a genetic algorithm. Proteins Struct. Funct. Bioinform. 38(4), 428–440 (2000)CrossRefGoogle Scholar
  118. 118.
    K. Hanada, T. Yokoyama, T. Shimizu, Multiple sequence alignment by genetic algorithm. Genome Inform. 11, 317–318 (2000)Google Scholar
  119. 119.
    L.A. Anbarasu, P. Narayanasamy, V. Sundararajan, Multiple molecular sequence alignment by island parallel genetic algorithm. Curr. Sci. (2000), pp. 858–863Google Scholar
  120. 120.
    H.D. Nguyen, I. Yoshihara, K.Yamamori, M. Yasunaga, A parallel hybrid genetic algorithm for multiple protein sequence alignment, in Proceedings of the 2002 IEEE Congress on Evolutionary Computation (2002), pp. 309–314Google Scholar
  121. 121.
    C. Gaspin, T. Schiex, Genetic algorithms for genetic mapping, in European Conference on Artificial Evolution (Springer, Berlin, 1997), pp. 145–155Google Scholar
  122. 122.
    J. Gunnels, P. Cull, J.L. Holloway, Genetic algorithms and simulated annealing for gene mapping, in IEEE World Congress on Computational Intelligence (1994), pp. 385–390Google Scholar
  123. 123.
    J.W. Fickett, M.J. Cinkosky, A Genetic Algorithm for Assembling Chromosome Physical Maps, no. CONF-9206273 (World Scientific Publishing Co. Pte. Ltd., River Edge, 1993)Google Scholar
  124. 124.
    A. Kel, A. Ptitsyn, V. Babenko, S. Meier-Ewert, H. Lehrach, A genetic algorithm for designing gene family-specific oligonucleotide sets used for hybridization: the G protein-coupled receptor protein superfamily. Bioinformatics 14(3) (1998), pp. 259–270CrossRefGoogle Scholar
  125. 125.
    V.G. Levitsky, A.V. Katokhin, Recognition of eukaryotic promoters using a genetic algorithm based on iterative discriminant analysis. Silico Biol. 3(1, 2) (2003), pp. 81–87Google Scholar
  126. 126.
    M.L.M. Beckers, L.M.C. Buydens, J.A. Pikkemaat, C. Altona, Application of a genetic algorithm in the conformational analysis of methylene-acetal-linked thymine dimers in DNA: comparison with distance geometry calculations. J. Biomol. NMR 9(1), 25–34 (1997)CrossRefGoogle Scholar
  127. 127.
    R.V. Parbhane, S. Unniraman, S.S. Tambe, V. Nagaraja, B.D. Kulkarni, Optimum DNA curvature using a hybrid approach involving an artificial neural network and genetic algorithm. J. Biomol. Struct. Dyn. 17(4), 665–672 (2000)CrossRefGoogle Scholar
  128. 128.
    F.H.D. Van Batenburg, A.P. Gultyaev, C.W.A. Pleij, An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J. Theor. Biol. 174(3), 269–280 (1995)CrossRefGoogle Scholar
  129. 129.
    A.P. Gultyaev, F.H.D. Van Batenburg, C.W.A. Pleij, The computer simulation of RNA folding pathways using a genetic algorithm. J. Mol. Biol. 250(1), 37–51 (1995)CrossRefGoogle Scholar
  130. 130.
    K.C. Wiese, E. Glen, A permutation-based genetic algorithm for the RNA folding problem: a critical look at selection strategies, crossover operators, and representation issues. Biosystems 72(1), 29–41 (2003)CrossRefGoogle Scholar
  131. 131.
    R. Unger, J. Moult, On the applicability of genetic algorithms to protein folding, in Proceeding of the Twenty-Sixth IEEE Hawaii International Conference on System Sciences (1993), pp. 715–725Google Scholar
  132. 132.
    H.S. Lopes, R. Bitello, A differential evolution approach for protein folding using a lattice model. J. Comput. Sci. Technol. 22(6), 904–908 (2007)CrossRefGoogle Scholar
  133. 133.
    A.L. Patton, W.F. Punch III, E.D. Goodman, A standard GA approach to native protein conformation prediction, in ICGA (1995), pp. 574–581Google Scholar
  134. 134.
    N. Krasnogor, W.E. Hart, J. Smith, D.A. Pelta, Protein structure prediction with evolutionary algorithms, in Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation (1999), pp. 1596–1601Google Scholar
  135. 135.
    N. Krasnogor, D. Pelta, P.M. Lopez, P. Mocciola, E. De la Canal, Genetic algorithms for the protein folding problem: a critical view, in Proceedings of Engineering of Intelligent Systems (1998)Google Scholar
  136. 136.
    S. Bandyopadhyay, An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection. Fuzzy Sets Syst. 152(1), 5–16 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    N. Mansour, F. Kanj, H. Khachfe, Particle swarm optimization approach for protein structure prediction in the 3D HP model. Interdiscip. Sci. Comput. Life Sci. 4(3), 190 (2012)CrossRefGoogle Scholar
  138. 138.
    M. Karabulut, T. Ibrikci, A Bayesian scoring scheme based particle swarm optimization algorithm to identify transcription factor binding sites. Appl. Soft Comput. 12(9), 2846–2855 (2012)CrossRefGoogle Scholar
  139. 139.
    P. Rakshit, A. Konar, A. Chowdhury, E. Kim, A.K. Nagar, Multi-objective evolutionary approach of ligand design for protein-ligand docking problem, in IEEE Congress on Evolutionary Computation (2013), pp. 237–244Google Scholar
  140. 140.
    A. Chowdhury, P. Rakshit, A. Konar, Prediction of protein-protein interaction network using a multi-objective optimization approach. J. Bioinf. Comput. Biol. 14(3), 1650008–1650041 (2016)CrossRefGoogle Scholar
  141. 141.
    A. Chowdhury, A. Konar, P. Rakshit, A.K. Nagar, A multi-objective evolutionary approach to evaluate the designing perspective of protein-protein interaction network. J. Netw. Innov. Comput. 1(1), 445–465 (2013)Google Scholar
  142. 142.
    P. Rakshit, P. Das, A. Chowdhury, A. Konar, A.K. Nagar, Evolutionary approach for designing protein-protein interaction network using artificial bee colony optimization, in IEEE International Conference on Computing, Communication and Networking Technologies (2012), pp. 1–8Google Scholar
  143. 143.
    P. Rakshit, A. Chowdhury, A. Konar, A.K. Nagar, Evaluating the designing perspective of protein-protein interaction network using evolutionary algorithm, in Nature and Biologically Inspired Computing (2012), pp. 141–148Google Scholar
  144. 144.
    A. Chowdhury, A. Konar, P. Rakshit, R. Janarthanan, An evolutionary approach for analyzing the effect of interaction site structural features on protein-protein complex formation, in International Conference on Pattern Recognition and Machine Intelligence (2013), pp. 656–661Google Scholar
  145. 145.
    A. Chowdhury, P. Rakshit, A. Konar, A.K. Nagar, A modified Bat algorithm to predict protein-protein interaction network, in IEEE Congress on Evolutionary Computation (2014), pp. 1046–1053Google Scholar
  146. 146.
    A. Chowdhury, P. Rakshit, A. Konar, A.K Nagar, A multi-objective evolutionary approach to predict protein-protein interaction network, in IEEE Congress on Evolutionary Computation (2015), pp. 1628–1635Google Scholar
  147. 147.
    A. Chowdhury, P. Rakshit, A. Konar, A.K Nagar, A meta-heuristic approach to predict protein-protein interaction network, in IEEE Congress on Evolutionary Computation (2016), pp. 2137–2144Google Scholar
  148. 148.
    A. Chowdhury, A. Konar, P. Rakshit, R. Janarthanan, Protein function prediction using adaptive swarm based algorithm, in Swarm, Evolutionary and Memetic Computing Conference, vol. 8298 (2013), pp. 55–68CrossRefGoogle Scholar
  149. 149.
    A. Chowdhury, A. Konar, P. Rakshit, R. Janarthanan, An immune system inspired algorithm for protein function prediction, in International Conference on Computing, Networking and Informatics (2014), pp. 687–695Google Scholar
  150. 150.
    R. Angira, B.V. Babu, Optimization of process synthesis and design problems: A modified differential evolution approach. Chem. Eng. Sci. 61(14), 4707–4721 (2006)CrossRefGoogle Scholar
  151. 151.
    M.H. Khademi, P. Setoodeh, M.R. Rahimpour, A. Jahanmiri, Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method. Int. J. Hydrogen Energy 34(16), 6930–6944 (2009)CrossRefGoogle Scholar
  152. 152.
    B.V. Babu, P.G. Chakole, J.H.S. Mubeen, Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Chem. Eng. Sci. 60(17), 4822–4837 (2005)CrossRefGoogle Scholar
  153. 153.
    B.V. Babu, S.A. Munawar, Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem. Eng. Sci. 62(14), 3720–3739 (2007)CrossRefGoogle Scholar
  154. 154.
    J.P. Chiou, F.S. Wang, Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Comput. Chem. Eng. 23(9), 1277–1291 (1999)CrossRefGoogle Scholar
  155. 155.
    P.K. Liu, F.S. Wang, Hybrid differential evolution with geometric mean mutation in parameter estimation of bioreaction systems with large parameter search space. Comput. Chem. Eng. 33(11), 1851–1860 (2009)CrossRefGoogle Scholar
  156. 156.
    B.V. Babu, K.K.N. Sastry, Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation. Comput. Chem. Eng. 23(3), 327–339 (1999)CrossRefGoogle Scholar
  157. 157.
    S. Paterlini, T. Krink, Differential evolution and particle swarm optimisation in partitional clustering. Comput. Stat. Data Anal. 50(5), 1220–1247 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    S. Das, A. Abraham, A. Konar, Metaheuristic pattern clustering–an overview, in Metaheuristic Clustering (Springer, Berlin, 2009), pp. 1–62Google Scholar
  159. 159.
    U. Maulik, I. Saha, Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recogn. 42(9), 2135–2149 (2009)zbMATHCrossRefGoogle Scholar
  160. 160.
    S. Das, A. Konar, Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9(1), 226–236 (2009)CrossRefGoogle Scholar
  161. 161.
    P. Besson, V. Popovici, J.M. Vesin, J.P. Thiran, M. Kunt, Extraction of audio features specific to speech production for multimodal speaker detection. IEEE Trans. Multimedia 10(1), 63–73 (2008)CrossRefGoogle Scholar
  162. 162.
    A. Saha, A. Konar, P. Rakshit, A.K. Nagar, Olfaction recognition by EEG analysis using differential evolution induced Hopfield neural net, in IEEE International Joint Conference on Neural Networks (2013), pp. 1–8Google Scholar
  163. 163.
    J. Ilonen, J.K. Kamarainen, J. Lampinen, Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)CrossRefGoogle Scholar
  164. 164.
    J.X. Du, D.S. Huang, X.F. Wang, X. Gu, Shape recognition based on neural networks trained by differential evolution algorithm. Neurocomputing 70(4), 896–903 (2007)CrossRefGoogle Scholar
  165. 165.
    G.D. Magoulas, V.P. Plagianakos, M.N. Vrahatis, Neural network-based colonoscopic diagnosis using on-line learning and differential evolution. Appl. Soft Comput. 4(4), 369–379 (2004)CrossRefGoogle Scholar
  166. 166.
    B. Subudhi, D. Jena, Differential evolution and Levenberg Marquardt trained neural network scheme for nonlinear system identification. Neural Process. Lett. 27(3), 285–296 (2008)CrossRefGoogle Scholar
  167. 167.
    R. Storn, Designing nonstandard filters with differential evolution. IEEE Signal Process. Mag. 22(1), 103–106 (2005)CrossRefGoogle Scholar
  168. 168.
    N. Karaboga, Digital IIR filter design using differential evolution algorithm. EURASIP J. Appl. Signal Process. 1269–1276 (2005)Google Scholar
  169. 169.
    S. Das, A. Konar, Two-dimensional IIR filter design with modern search heuristics: A comparative study. Int. J. Comput. Intell. Appl. 6(3), 329–355 (2006)zbMATHCrossRefGoogle Scholar
  170. 170.
    W.D. Chang, Two-dimensional fractional-order digital differentiator design by using differential evolution algorithm. Digit. Signal Proc. 19(4), 660–667 (2009)MathSciNetCrossRefGoogle Scholar
  171. 171.
    M. Yousefi, M. Mosalanejad, G. Moradi, A. Abdipour, Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique. IEICE Electr. Express 9(12), 1030–1035 (2012)CrossRefGoogle Scholar
  172. 172.
    S. Xue-Bin, L. Zhan-Min, Z. Cheng-Lin, Z. Zheng, Cognitive UWB pulse waveform design based on particle swarm optimization. Adhoc Sens. Wirel. Netw. 16 (2012)Google Scholar
  173. 173.
    H. Yongqiang, L. Wentao, L. Xiaohui, Particle swarm optimization for antenna selection in MIMO system. Wirel. Pers. Commun. 1–17 (2013)Google Scholar
  174. 174.
    Y.G. Kim, M.J. Lee, Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Commun. Mag. 52(1), 122–129 (2014)CrossRefGoogle Scholar
  175. 175.
    L. Ming, H. Hai, Z. Aimin, S. Yingde, L. Zhao, Z. Xingguo, Modeling of mechanical properties of as-cast Mg–Li–Al alloys based on PSO-BP algorithm. China Foundry 9(2) (2012)Google Scholar
  176. 176.
    J. Chen, Y. Tang, R. Ge, Q. An, X. Guo, Reliability design optimization of composite structures based on PSO together with FEA. Chin. J. Aeronaut. 26(2), 343–349 (2013)CrossRefGoogle Scholar
  177. 177.
    S.C. Mohan, D.K. Maiti, D. Maity, Structural damage assessment using FRF employing particle swarm optimization. Appl. Math. Comput. 219(20), 10387–10400 (2013)MathSciNetzbMATHGoogle Scholar
  178. 178.
    J. Chen, Y. Tang, X. Huang, Application of surrogate based particle swarm optimization to the reliability-based robust design of composite pressure vessels. Acta Mech. Solida Sin. 26(5), 480–490 (2013)CrossRefGoogle Scholar
  179. 179.
    A. Bozorgi-Amiri, M.S. Jabalameli, M. Alinaghian, M. Heydari, A modified particle swarm optimization for disaster relief logistics under uncertain environment. Int. J. Adv. Manuf. Technol. 60(1), 357–371 (2012)CrossRefGoogle Scholar
  180. 180.
    J.S. Yazdi, J.F. Kalantary, H.S. Yazdi, Calibration of soil model parameters using particle swarm optimization. Int. J. Geomech. 12(3), 229–238 (2011)CrossRefGoogle Scholar
  181. 181.
    B. Bolat, O. Altun, P. Cortés, A particle swarm optimization algorithm for optimal car-call allocation in elevator group control systems. Appl. Soft Comput. 13(5), 2633–2642 (2013)CrossRefGoogle Scholar
  182. 182.
    K.S.J. Babu, D.P. Vijayalakshmi, Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. J. Pipeline Syst. Eng. Pract. 4(1), 57–67 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations