Skip to main content

Secure Communication Based on Quantum Noise

  • Chapter
  • First Online:
Multi-photon Quantum Secure Communication

Abstract

Advantage creation through intrusion-level detection used by BB84-based QKD protocols is only one possibility permitted by quantum effects. In the early 2000s, another class of quantum cryptography protocols, called keyed communication in quantum noise (KCQ) based on quantum detection and communication theory, was proposed. A main advantage of the KCQ protocols is that they generally allow the use of hundreds or thousands of photons in a signal pulse in contrast to the nominally single photon per pulse in BB84-based QKD protocols. This chapter introduces the concept of KCQ and describes certain implementations of the KCQ protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74, 145.

    Article  Google Scholar 

  2. Lo, H.-K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8, 595.

    Article  Google Scholar 

  3. Yuen, H. P. KCQ: A new approach to quantum cryptography I. General principles and key generation. http://arxiv.org/abs/quant-ph/0311061v6.

  4. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54, 1355.

    Article  MathSciNet  Google Scholar 

  5. Corndorf, E., Liang, C., Kanter, G. S., Kumar, P., & Yuen, H. P. (2005). Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks. Physical Review A, 71, 062326.

    Article  Google Scholar 

  6. Chan, K. W. C., El Rifai, M., Verma, P. K., Kak, S., & Chen, Y. (2015). Security analysis of the multi-photon three-stage quantum key distribution. International Journal on Cryptography and Information Security (IJCIS), 5(3/4), 1–13.

    Article  Google Scholar 

  7. El Rifai, M., Chan, K. W. C., & Verma, P. K. (2015). Multi-stage quantum secure communication using polarization hopping. Security Communication Networks, 8, 4333.

    Article  Google Scholar 

  8. Maurer, U. (1993). Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory, 39, 733.

    Article  MathSciNet  Google Scholar 

  9. Kish, L. B. (2006). Totally secure classical communication utilizing Johnson(-like) noise and Kirchoff’s law. Physics Letters A, 352, 178.

    Article  Google Scholar 

  10. Zhuang, Q., Zhang, Z., Dove, J., Wong, F. N. C., & Shapiro, J. H. (2016). Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates. Physical Review A, 94, 012322.

    Article  Google Scholar 

  11. Saad, W., Zhou, X., Debbah, M., & Poor, H. V. (2015). Wireless physical layer security: Part 1. IEEE Communications Magazine, 53, 15.

    Article  Google Scholar 

  12. Baldi, M., & Tomasin, S. (2016). Physical and data-link security techniques for future communication systems. Springer.

    Google Scholar 

  13. Wang, H.-M., & Zheng, T.-X. (2016). Physical layer security in random cellular networks. Springer.

    Google Scholar 

  14. Yuen, H. P. (2009). Key generation: Foundations and a new quantum approach. IEEE Journal on Selected Topics Quantum Electronics, 15, 1630.

    Article  Google Scholar 

  15. Barbosa, G. A., Corndorf, E., Kumar, P., & Yuen, H. P. (2003). Secure communication using mesoscopic coherent states. Physical Review Letters, 90, 227901.

    Article  Google Scholar 

  16. Hirota, O., Sohma, M., Fuse, M., & Kato, K. (2005). Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme. Physical Review A, 72, 022335.

    Article  Google Scholar 

  17. Donnet, S., Thangaraj, A., Bloch, M., Cussey, J., Merolla, J. M., & Larger, L. (2006). Security of Y-00 under heterodyne measurement and fast correlation attack. Physics Letters A, 356, 406.

    Article  Google Scholar 

  18. Shimizu, T., Hirota, O., & Nagasako, Y. (2008). Running key mapping in a quantum stream cipher by the Yuen 2000 protocol. Physical Review A, 77, 034305.

    Article  Google Scholar 

  19. Liang, C., Kanter, G. S., Corndorf, E., & Kumar, P. (2005). Quantum noise protected data encryption in a WDM network. IEEE Photonic Technology Letters, 17, 1573.

    Article  Google Scholar 

  20. Harasawa, K., Hirota, O., Yamashita, K., Honda, M., Ohhata, K., Akutsu, S., et al. (2011). Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation. Journal of Lightwave Technology, 29(3), 323–361.

    Article  Google Scholar 

  21. Doi, Y., Akutsu, S., Honda, M., Harasawa, K., Hirota, O., Kawanishi, S., Ohhata, K., Yamashita, K. (2010). 360 km field transmission of 10 Gbit/s stream cipher by quantum noise for optical network. In Proceeding optical fiber communication conference (OFC), OWC4.

    Google Scholar 

  22. Futami, F. (2014). Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications. Quantum Information Processing, 13, 2277.

    Article  Google Scholar 

  23. Nakazawa, M., Yoshida, M., Hirooka, T., & Kasai, K. (2014). QAM quantum stream cipher using digital coherent optical transmission. Optics Express, 22, 4098.

    Article  Google Scholar 

  24. Yoshida, M., Hirooka, T., Kasai, K., & Nakazawa, M. (2016). Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km. Optics Express, 24, 652.

    Article  Google Scholar 

  25. Shannon, C. (1949). Communication theory of secrecy systems. Bell System Technical Journal, 28, 656.

    Article  MathSciNet  Google Scholar 

  26. Csiszár, I., & Körner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24, 339.

    Article  MathSciNet  Google Scholar 

  27. Nair, R., & Yuen, H. P. (2008). Comment on: “Exposed-key weakness of αη” [Phys. Lett. A 370 (2007) 131]. Physics Letters A, 372, 7091.

    Article  MathSciNet  Google Scholar 

  28. Mihaljević, M. J. (2007). Generic framework for the secure Yuen 2000 quantum-encryption protocol employing the wire-tap channel approach. Physical Review A, 75, 052334.

    Article  Google Scholar 

  29. Hirota, O., & Sohma, M. (2011). Towards a new way of quantum communication: Getting around the shannon limit of cryptography. Tamagawa University Quantum ICT Research Institute Bulletin, 1(1), 1–13.

    Google Scholar 

  30. Hirota, O. (2007). Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol. Physical Review A, 76, 032307.

    Article  Google Scholar 

  31. Nair, R., Yuen, H. P., Corndorf, E., Eguchi, T., & Kumar, P. (2006). Quantum-noise randomized ciphers. Physical Review A, 74, 052309.

    Article  Google Scholar 

  32. Futami, F., Tanizawa, K., Kato, K., Hirota, O. (2017). Experimental investigation of security parameters of Y-00 quantum stream cipher transceiver with randomization technique, Part I. In Proceedings volume 10409, quantum communications and quantum imaging XV; 104090I.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramode K. Verma .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P.K., El Rifai, M., Chan, K.W.C. (2019). Secure Communication Based on Quantum Noise. In: Multi-photon Quantum Secure Communication. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8618-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8618-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8617-5

  • Online ISBN: 978-981-10-8618-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics