Skip to main content

A General Equilibrium Model in Which Consumption Takes Time

  • Chapter
  • First Online:
Book cover Recent Developments in Normative Trade Theory and Welfare Economics

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 26))

Abstract

This chapter examines a general equilibrium competitive economy with many heterogeneous agents. The key feature of the model is that consumption itself takes time so that a typical household is subject to a financial constraint as well as a time constraint. Using the dividend approach proposed by Le-Van and Nguyen (J Math Econ 43:135−152, 2007), it is shown that the economy possesses at least one autarkic Walrasian equilibrium. Sufficient conditions for the uniqueness of the autarkic equilibrium are then derived. Finally, a specific example is provided to illustrate the working of the model, including the derivation of the equilibrium labour allocation and some comparative static results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly enough, Becker (1965) did not refer to the work of Gossen (1854/1983). This is not surprising as Gossen’s work was not generally known to English-speaking economists until the English translation of his book became available in 1983.

  2. 2.

    For an elaboration, the interested reader is referred to Sect. 6.3 of Chap. 6 in this edited volume.

References

  • Becker, G. (1965). A theory of the allocation of time. Economic Journal, 75, 483–517.

    Article  Google Scholar 

  • Geistdoerfer−Florenzano, M. (1982). “The Gale−Nikaido−Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption”. Journal of Mathematical Economics, 9, 113−134.

    Article  Google Scholar 

  • Gossen, H. H. (1854). Entwickelung der gesetze des menschlichen verkehrs und der daraus fließenden regeln für menschliches handeln. Braunschweig: Vieweg und Sohn.

    Google Scholar 

  • Gossen, H. H. (1983). The laws of human relations and the rules of human action derived therefrom. Cambridge, MA: MIT Press. English translation by R. C. Blitz of H. H. Gossen (1854).

    Google Scholar 

  • Le-Van, C., & Nguyen, B. M. (2007). No-arbitrage condition and existence of equilibrium with dividends. Journal of Mathematical Economics, 43, 135–152.

    Article  Google Scholar 

  • Robbins, L. (1935). An essay on the nature and significance of economic science (2nd ed.). London: Macmillan.

    Google Scholar 

  • Tran-Nam, B. (2018). Time allocation under autarky and free trade in the presence of time-consuming consumption. In B. Tran-Nam, M. Tawada, & M. Okawa (Eds.), Recent developments in normative trade theory and welfare economics (Chapter 6 to be derived directly from this edited volume). Singapore: Springer.

    Google Scholar 

  • Tran-Nam, B., & Pham, N-S. (2014). A simple general equilibrium model incorporating the assumption that consumption takes time, Mimeo, UNSW Sydney.

    Google Scholar 

  • Tran-Nam, B., Le-Van, C., Nguyen, T-D-H., & Pham, N-S. (2016, August 11–12). A simple general equilibrium model in which consumption takes time. Ninth Vietnam Economists Annual Meeting (VEAM). Danang: University of Danang.

    Google Scholar 

Download references

Acknowledgement

The book chapter is a substantially revised version of a conference paper by the same group of authors presented at the Ninth Vietnam Economist Annual Meeting (VEAM), University of Danang, Vietnam, August 11–12, 2016. It also incorporates materials derived from a working paper by Tran-Nam and Pham (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh Tran-Nam .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 7.1: Proof of Proposition 7.1

  • Step 1. Introduce the intermediary economy:

$$ \widehat{\varepsilon}=\left\{{\left({\widehat{X}}^i,{\widehat{u}}^i,{\widehat{e}}^i\right)}_{i\in \mathbf{I}},{\left({\widehat{Y}}_j\right)}_{j\in \mathbf{J}}\right\} $$

where \( {\widehat{X}}^i={X}^i\times {\mathrm{\mathbb{R}}}_{+},{\widehat{e}}^i=\left({e}^i,{\delta}^i\right) \) with δi> 0 for all i ∈ I and \( {\widehat{Y}}_j=\left({Y}_j,0\right) \) for j ∈ J and the utilities ûi:

$$ {\widehat{u}}^i\left({x}^i,{d}^i\right)=\left\{\begin{array}{lll}{u}^i\left({x}^i\right)& \mathrm{if}& {x}^i\notin {S}^i\\ {}{u}^i\left({x}^i\right)+\mu {d}^i={M}^i+\mu {d}^i& \mathrm{if}& {x}^i\in {S}^i\end{array}\right. $$

where μ > 0 and Mi = max{ui(x): xXi}.

By denoting for all iI and jJ:

$$ {\displaystyle \begin{array}{c}{\widehat{x}}^i=\left({x}^i,{d}^i\right)=\left({c}_1^i,\dots, {c}_J^i,0,-{L}^i,{d}^i\right)\in {\widehat{X}}^i\\ {}{\widehat{e}}^i=\left({e}^i,{\delta}^i\right)=\left(0,\dots, 0,{\overline{K}}^i,0,{\delta}^i\right)\\ {}{\widehat{y}}_j=\left({\tilde{y}}_j,0\right)=\left(0,\dots, {F}_j\left({K}_j,{\tilde{L}}_j\right),\dots, 0,-{K}_j,-{\tilde{L}}_j,0\right)\\ {}\widehat{p}=\left(p,q\right)=\left({p}_1,\dots, {p}_J,r,w,q\right),\end{array}} $$

we can rewrite the definition of quasi-equilibrium with dividends as follows.

A quasi-equilibrium of \( \widehat{\varepsilon} \) is a list \( \left({\left({\widehat{x}}^{\ast i}\right)}_{i\in \mathbf{I}},{\left({y}_j^{\ast}\right)}_{j\in \mathbf{J}},{\widehat{p}}^{\ast i}\right)\in {\left({\mathrm{\mathbb{R}}}^{J+3}\right)}^I\times {\left({\mathrm{\mathbb{R}}}^{J+3}\right)}^J\times {\mathrm{\mathbb{R}}}^{J+3} \) which satisfies

$$ {\sum}_{i\in \mathbf{I}}{\widehat{x}}^{\ast i}={\sum}_{i\in \mathbf{I}}{\widehat{e}}^{\ast i}+{\sum}_{j\in \mathbf{J}}{\widehat{y}}_j^{\ast } $$
  1. (a)

    For each i, one has

$$ {\widehat{p}}^{\ast}\cdot {\widehat{x}}^i={\widehat{p}}^{\ast i}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}\left({\widehat{p}}^{\ast}\cdot {\widehat{y}}_j^{\ast}\right) $$

and for each \( {\widehat{x}}^i\in {\widehat{X}}^i, \) with \( {\widehat{u}}^i\left({\widehat{x}}^i\right)>{\widehat{u}}^i\left({\widehat{x}}^{\ast i}\right), \) it holds

$$ {\widehat{p}}^{\ast}\cdot {\widehat{x}}^i\ge {\widehat{p}}^{\ast i}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}\left({\widehat{p}}^{\ast}\cdot {\widehat{y}}_j^{\ast}\right) $$
  1. (b)

    For each jJ, one has \( {\widehat{y}}_j^{\ast}\in {\widehat{Y}}_j \) and \( {\widehat{p}}^{\ast}\cdot {\widehat{y}}_j^{\ast }=\sup \left({\widehat{p}}^{\ast}\cdot {\widehat{Y}}_j\right)={\sup}_{{\widehat{y}}_j\in {\widehat{Y}}_j}\left(\widehat{p}\cdot {\widehat{y}}_j\right) \).

We consider the feasible set  of \( \widehat{\varepsilon}: \)

$$ {\displaystyle \begin{array}{c}\widehat{A}=\left\{\left({\left({\widehat{x}}^i\right)}_{i\in \mathbf{I}},{\left({\widehat{y}}_j\right)}_{j\in \mathbf{J}}\right):\forall i\in \mathrm{I},{\widehat{x}}^i\in {\widehat{X}}^i;\forall j\in \mathbf{J},{\widehat{y}}_j\in {\widehat{Y}}_j\kern0.5em \mathrm{and}\sum \limits_{i\in \mathbf{I}}{\widehat{x}}^i\right.\\ {}\left.=\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\widehat{y}}_j\right\}\end{array}} $$

We can see that  is compact.

  • Step 2. For each iI, the function \( {\widehat{u}}^i \) is strictly quasi-concave, upper semi-continuous and has no satiation point.

Denote \( {\mathrm{\mathcal{L}}}_{\alpha}^i=\left\{{x}^i\in {X}^i:{u}^i\left({x}^i\right)\ge \alpha \right\} \); \( {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i=\left\{\left({x}^i,{d}^i\right)\in {\widehat{X}}^i:{\widehat{u}}^i\left({x}^i,{d}^i\right)\ge \alpha \right\} \). It is obvious that \( {\mathrm{\mathcal{L}}}_{\alpha}^i \) and Si are closed and convex for every α. We will prove that \( {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i \) is also closed and convex. We have two cases.

Case 1

α < Mi.

  • If x ∉ Si, then \( {\widehat{u}}^i\left({x}^i,{d}^i\right)={u}^i\left({x}^i\right). \)So \( \left({x}^i,{d}^i\right)\in {\mathrm{\mathcal{L}}}_{\alpha}^i\times {\mathrm{\mathbb{R}}}_{+}\iff \left({x}^i,{d}^i\right)\in {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i. \)

  • If xSi, then ui(xi) = Mi> α and \( {\widehat{u}}^i\left({x}^i,{d}^i\right)={M}^i+{\mu d}^i>\alpha \); it implies \( \left({x}^i,{d}^i\right)\in {\mathrm{\mathcal{L}}}_{\alpha}^i\times {\mathrm{\mathbb{R}}}_{+} \)and \( \left({x}^i,{d}^i\right)\in {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i. \)

$$ {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i={\mathrm{\mathcal{L}}}_{\alpha}^i\times {\mathrm{\mathbb{R}}}_{+}. $$
(Hence)

Case 2

α ≥ Mi. Consider \( \left({x}^i,{d}^i\right)\in {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i. \)

  • If xi ∉ Si, then \( {u}^i\left({x}^i\right)={\widehat{u}}^i\left({x}^i,{d}^i\right)\ge \alpha \ge {M}^i \) contradict the definition of Mi.

  • Hence xiSi. We have \( {\widehat{u}}^i\left({x}^i,{d}^i\right)={M}^i+\mu {d}^i\ge \alpha \iff {d}^i\ge \frac{\alpha -{M}^i}{\mu }. \) It implies that \( {\widehat{\mathrm{\mathcal{L}}}}_{\alpha}^i={S}^i\times \left\{{d}^i:{d}^i\ge \frac{\alpha -{M}^i}{\mu}\right\} \).

We have proved that \( {\widehat{u}}^i \) is upper semi-continuous and quasi-concave for every iI.

We now prove that \( {\widehat{u}}^i \) is strictly quasi-concave. Take \( \left({x}^i,{d}^i\right),\left({\tilde{x}}^i,{\tilde{d}}^i\right)\in {X}^i\times {\mathrm{\mathbb{R}}}_{+} \) such that \( {\widehat{u}}^i\left({\tilde{x}}^i,{\tilde{d}}^i\right)>{\widehat{u}}^i\left({x}^i,{d}^i\right). \) For any , we will verify that

$$ {\widehat{u}}^i\left(\uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i,\uplambda {d}^i+\left(1-\uplambda \right){\tilde{d}}^i\right)>{\widehat{u}}^i\left({x}^i,{d}^i\right) $$

We have two cases.

Case 1

xiSi. We have \( {\widehat{u}}^i\left({x}^i,{d}^i\right)={M}^i+{\mu d}^i \).

Since \( {\widehat{u}}^i\left({\tilde{x}}^i,{\tilde{d}}^i\right)>{\widehat{u}}^i\left({x}^i,{d}^i\right) \), it implies \( {\tilde{x}}^i\in {S}^i \) and \( {\tilde{d}}^i>{d}^i \). This follows \( \uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i\in {S}^i \), and we have

$$ {\displaystyle \begin{array}{c}{\widehat{u}}^i\left(\uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i,\uplambda {d}^i+\left(1-\uplambda \right){\tilde{d}}^i\right)={M}^i+\mu \left(\uplambda {d}^i+\left(1-\uplambda \right){\tilde{d}}^i\right)\\ {}>{M}^i+\mu \left(\uplambda {d}^i+\left(1-\uplambda \right){d}^i\right)\\ {}={M}^i+{d}^i={\widehat{u}}^i\left({x}^i,{d}^i\right)\end{array}} $$

Case 2

xi ∉ Si. We have \( {\widehat{u}}^i\left({x}^i,{d}^i\right)={u}^i\left({x}^i\right)<{M}^i \) and \( {u}^i\left({\tilde{x}}^i\right)>{u}^i\left({x}^i\right). \)

If \( \uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i\in {S}^i \), then

$$ {\displaystyle \begin{array}{c}{\widehat{u}}^i\left(\uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i,\uplambda {d}^i+\left(1-\uplambda \right){\tilde{d}}^i\right)={M}^i+\mu \left(\uplambda {d}^i+\left(1-\uplambda \right){\tilde{d}}^i\right)\\ {}>{u}^i\left({x}^i\right)={\widehat{u}}^i\left({x}^i,{d}^i\right).\end{array}} $$

If \( \uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i\notin {S}^i, \) since ui is concave, we have:

$$ {\displaystyle \begin{array}{c}{\widehat{u}}^i\left(\uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i,\uplambda {d}^i+\left(1-\uplambda \right){\tilde{d}}^i\right)={u}^i\left(\uplambda {x}^i+\left(1-\uplambda \right){\tilde{x}}^i\right)\\ {}\ge \uplambda {u}^i\left({x}^i\right)+\left(1-\uplambda \right){u}^i\left({\tilde{x}}^i\right)\\ {}>{u}^i\left({x}^i\right)={\widehat{u}}^i\left({x}^i,{d}^i\right).\end{array}} $$

We have proved that ûi is strictly quasi-concave. We now prove that \( {\widehat{u}}^i \) has no satiation point. Take \( \left({x}^i,{d}^i\right)\in {\widehat{X}}^i; \) we will verify that there exists \( \left({\tilde{x}}^i,{\tilde{d}}^i\right)\in {\widehat{X}}^i \) such that \( {\widehat{u}}^i\left({\tilde{x}}^i,{\tilde{d}}^i\right)>{\widehat{u}}^i\left({x}^i,{d}^i\right). \) We consider two cases:

  • xiSi. Take \( {\tilde{x}}^i={x}^i \) and \( {\tilde{d}}^i>{d}^i. \) We have

$$ {\widehat{u}}^i\left({\tilde{x}}^i,{\tilde{d}}^i\right)={M}^i+\mu {\tilde{d}}^i>{M}^i+\mu {d}^i={\widehat{u}}^i\left({x}^i,{d}^i\right). $$
  • xi ∉ Si. Take \( {\tilde{x}}^i\in {X}^i \) such that \( {u}^i\left({\tilde{x}}^i\right)>{u}^i\left({x}^i\right) \) and \( {\tilde{d}}^i={d}^i. \) We have

$$ {\widehat{u}}^i\left({\tilde{x}}^i,{\tilde{d}}^i\right)\ge {u}^i\left({\tilde{x}}^i\right)>{u}^i\left({x}^i\right)={\widehat{u}}^i\left({x}^i,{d}^i\right). $$

We have proved that \( {\widehat{u}}^i \) has no satiation point.

  • Step 3. We consider a sequence of truncated economies.

Let B(0, n) denote the ball centred at 0 with radius n. Let

$$ {\widehat{X}}_n^i={\widehat{X}}^i\cap B\left(0,n\right),\kern0.5em i\in \mathbf{I}. $$

Let S be the unit sphere of ℝJ + 4. For every \( \left(\widehat{p},s\right)\in S\cap \left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right), \) define the multivalued mapping

$$ {\xi}_n^i,{Q}_n^i:S\cap \left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right)\to {\widehat{X}}^i $$

by setting:

$$ {\displaystyle \begin{array}{ll}{\xi}_n^i\left(\widehat{p},s\right)& =\left\{{\widehat{x}}^i\in {\widehat{X}}_n^i:\widehat{p}\cdot {\widehat{x}}^i\le \widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s\right\}{Q}_n^i\left(\widehat{p},s\right)\\ {}& =\left\{{\widehat{x}}^i\in {\xi}_n^i\left(\widehat{p},s\right):\mathrm{if}\;{{\widehat{x}}{\prime}}^i\in {\widehat{X}}_n^i\;\mathrm{with}\;{\widehat{u}}_i\left({{\widehat{x}}{\prime}}^i\right)>{\widehat{u}}^i\left({\widehat{x}}^i\right)\;\mathrm{then}\;\widehat{p}\cdot {{\widehat{x}}{\prime}}^i\ge \widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s\right\},\end{array}} $$

where \( {\Pi}_j^n(p)=\max \left(p\cdot {Y}_j^n\right) \) is profit of firm j in truncated economies.

Define the mapping z n  : S ∩ (ℝJ + 3 × ℝ+) → ℝJ + 4 by setting

$$ {z}_n\left(\widehat{p},s\right)=\left(\sum \limits_{i\in \mathbf{I}}{Q}_n^i\left(\widehat{p},s\right)-\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i-\sum \limits_{j\in \mathbf{J}}{\Phi}_j^n\left(\widehat{p}\right)\right)\times \left\{-I\right\} $$

where \( {\Phi}_j^n\left(\widehat{p}\right)=\left\{{\widehat{y}}_j\in {\widehat{Y}}_j^n:\widehat{p}\cdot {\widehat{y}}_j=\max \widehat{p}\cdot {\widehat{Y}}_j^n\right\} \).

  • Step 4. (Lemma Gale–Nikaido–Debreu) Suppose

  1. (i)

    P be a closed nonempty convex cone in the linear spaceland S be the unit sphere inl.

  2. (ii)

    The multivalued mapping Z from S ∩ P tolis upper semi-continuous having nonempty convex compact values.

  3. (iii)

    For every p ∈ S ∩ P, ∃ z ∈ Z(p) such that p ⋅ z ≤ 0.

Then there exists \( \overline{p}\in S\cap P \) satisfying

Z p ¯ P 0 0 ,

where P0 = {q ∈ ℝl : q ⋅ p ≤ 0, ∀p ∈ P}

  • Step 5. For each iI, the mapping \( {\xi}_n^i\left(\widehat{p},s\right) \) is upper semi-continuous having nonempty convex compact values.

By choosing \( {\widehat{x}}^i=\left(0,\dots, 0,-{\overline{L}}^i,{\delta}^i\right)\in {\widehat{X}}^i \), we can easily see that ξ n i p ̂ s 0 .

If \( {\left\{{x}_k^i\right\}}_k\subset {\xi}_n^i\left(\widehat{p},s\right) \) and \( \underset{k\to +\infty }{\lim }{x}_k^i={\widehat{x}}^i \), then \( {\widehat{x}}^i\in {\widehat{X}}_n^i \) (since \( {\widehat{X}}_n^i \) compact) and \( \widehat{p}\cdot {\widehat{x}}^i\le \widehat{p}\cdot {\widehat{e}}^i+s. \)Hence \( {\xi}_n^i\left(\widehat{p},s\right) \) is closed, and since it is a subset of compact set \( {\widehat{X}}_n^i \), so \( {\xi}_n^i\left(\widehat{p},s\right) \) is compact.

For every \( {\widehat{x}}^i,{\widehat{z}}^i\in {\xi}_n^i\left(\widehat{p},s\right) \) and λ ∈ [0, 1], we have

$$ {\displaystyle \begin{array}{c}\widehat{p}\cdot \left[\left(1-\uplambda \right){\widehat{x}}^i+\uplambda {\widehat{z}}^i\right]=\left(1-\uplambda \right)\widehat{p}\cdot {\widehat{x}}^i+\uplambda \widehat{p}\cdot {\widehat{z}}^i\\ {}\le \left(1-\uplambda \right)\left(\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s\right)+\uplambda \left(\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s\right)\\ {}=\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s.\end{array}} $$

Hence 1 λ x ̂ i +λ z ̂ i ξ n i p ̂ s which means that \( {\xi}_n^i\left(\widehat{p},s\right) \) is convex.

Let \( \left\{{\widehat{p}}_k,{s}_k\right\}\subset S\cap \left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right) \) converge to \( \left(\widehat{p},s\right) \) and let \( \left\{{\widehat{x}}_k^i\right\} \) be a sequence with \( {\widehat{x}}_k^i\in {\xi}_n^i\left({p}_k,{s}_k\right)\forall k. \) Since \( \left\{{\widehat{x}}_k^i\right\}\subset {\widehat{X}}_n^i \) and \( {\widehat{X}}_n^i \) is compact, there exists subsequence \( \left\{{\widehat{x}}_{km}^i\right\} \) converging to \( {\widehat{x}}^i\in {\widehat{X}}_n^i. \) We have

$$ {\widehat{p}}_{k_m}\cdot {\widehat{x}}_{km}^i\le {\widehat{p}}_{k_m}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left({\widehat{p}}_{k_m}\right)+{s}_{k_m}. $$

Letting m → +, we obtain

$$ \widehat{p}\cdot {\widehat{x}}^i\le \widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s. $$

This implies that \( {\widehat{x}}^i\in {\xi}_n^i\left(\widehat{p},s\right). \) Hence \( {\xi}_n^i \) is upper semi-continuous.

  • Step 6. For each iI, the mapping \( {Q}_n^i\left(\widehat{p},s\right) \) is upper semi-continuous having nonempty convex compact values.

Since \( {\widehat{u}}^i \) is an upper semi-continuous function on \( {\xi}_n^i\left(\widehat{p},s\right), \) nonempty compact subset of ℝJ + 3, then \( {\widehat{u}}^i \) has a maximum on \( {\xi}_n^i\left(\widehat{p},s\right). \) Let \( x\in {\xi}_n^i\left(\widehat{p},s\right) \) and \( {\widehat{u}}^i(x)=\max \left\{{\widehat{u}}^i\left({\widehat{x}}^i\right):{\widehat{x}}^i\in {\xi}_n^i\left(\widehat{p},s\right)\right\} \). We will show that \( x\in {Q}_n^i\left(\widehat{p},s\right) \).

Indeed, let \( {x^{\prime}}^i\in {\widehat{X}}_n^i \) and \( {\widehat{u}}^i\left({x^{\prime}}^i\right)>{\widehat{u}}^i(x) \) and then \( {x^{\prime}}^i\notin {\xi}_n^i\left(\widehat{p},s\right) \) (by identifying x). Since \( {x^{\prime}}^i\notin {\xi}_n^i\left(\widehat{p},s\right) \), we have

$$ \widehat{p}\cdot {x^{\prime}}^i>\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s. $$

Hence \( x\in {Q}_n^i\left(\widehat{p},s\right) \) which implies that \( {Q}_n^i\left(\widehat{p},s\right) \) is not empty.

For every \( {\widehat{x}}^i,{\widehat{z}}^i\in {Q}_n^i\left(\widehat{p},s\right) \) and λ 0 1 , we will prove that \( {w}^i:= \uplambda {\widehat{x}}^i+\left(1-\uplambda \right){\widehat{z}}^i\in {Q}_n^i\left(\widehat{p},s\right). \)Indeed, since \( {\xi}_n^i\left(\widehat{p},s\right) \) is convex and \( {\widehat{x}}^i,{\widehat{z}}^i\in {\xi}_n^i\left(\widehat{p},s\right) \), we have \( {w}^i\in {\xi}_n^i\left(\widehat{p},s\right) \). Let \( {x^{\prime}}^i\in {\widehat{X}}_n^i \) with \( {\widehat{u}}^i\left({x^{\prime}}^i\right)>{\widehat{u}}^i\left({w}^i\right). \) Since \( {\widehat{u}}^i \) is strictly quasi-concave,

$$ {\widehat{u}}^i\left({w}^i\right)={\widehat{u}}^i\left(\uplambda {\widehat{x}}^i+\left(1-\uplambda \right){\widehat{z}}^i\right)>\min\;\left({\widehat{u}}^i\left({\widehat{x}}^i\right),{\widehat{u}}^i\left({\widehat{z}}^i\right)\right). $$

It follows that

$$ {\widehat{u}}^i\left(x{\hbox{'}}^i\right)>\min \left({\widehat{u}}^i\left({\widehat{x}}^i\right),{\widehat{u}}^i\left({\widehat{z}}^i\right)\right) $$

since \( {\widehat{x}}^i,{\widehat{z}}^i\in {Q}_n^i\left(\widehat{p},s\right); \) we have

$$ \widehat{p}\cdot {x^{\prime}}^i>\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s. $$

Hence \( {w}^i\in {Q}_n^i\left(\widehat{p},s\right) \) which implies that \( {Q}_n^i\left(\widehat{p},s\right) \) is convex.

Let \( \left({\widehat{p}}_k,{s}_k,{\widehat{x}}_k^i\right)\in \mathrm{graph}\;{Q}_n^i \) and assume that \( \left({\widehat{p}}_k,{s}_k\right)\to \left(\widehat{p},s\right);{\widehat{x}}_k^i\to {\widehat{x}}^i. \) We will show that \( \left(p,s,{\widehat{x}}^i\right)\in \mathrm{graph}{Q}_n^i \).

Since \( {\widehat{x}}_k^i\in {Q}_n^i\left({p}_k,{s}_k\right)\subset {\xi}_n^i\left({p}_k,{s}_k\right) \) and \( {\xi}_n^i \) is closed, we have \( {\widehat{x}}^i\in {\xi}_n^i\left(\widehat{p},s\right). \)

Let \( {x^{\prime}}^i\in {\widehat{X}}_n^i \) with \( {\widehat{u}}^i\left({x^{\prime}}^i\right)>{\widehat{u}}^i\left({\widehat{x}}^i\right). \) By the upper semi-continuity of \( {\widehat{u}}^i \), we have the set

$$ E:= \left\{x:{\widehat{u}}^i(x)<{\widehat{u}}^i\left({x^{\prime}}^i\right)\right\} $$

which is open in ℝJ + 3. Since \( {\widehat{x}}^i\in E, \) there exists ε > 0 such that the ball \( B\left({\widehat{x}}^i,\varepsilon \right)\subset E. \) On the other hand, since \( {\widehat{x}}_k^i\to {\widehat{x}}^i \), with that ε, there exists k0 such that \( {\widehat{x}}_k^i\in B\left({\widehat{x}}^i,\varepsilon \right),\forall k>{k}_0 \). Hence \( {\widehat{u}}^i\left({\widehat{x}}_k^i\right)<{\widehat{u}}^i\left({x^{\prime}}^i\right) \) for all k large enough.Since \( {\widehat{x}}_k^i\in {Q}_n^i\left({p}_k,{s}_k\right), \) we have

$$ {p}_k\cdot {x^{\prime}}^i>{p}_k\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left({\widehat{p}}_k\right)+{s}_k; $$

letting k → +, we obtain

$$ \widehat{p}\cdot {x^{\prime}}^i>\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left(\widehat{p}\right)+s. $$

This implies that \( {\widehat{x}}^i\in {Q}_n^i\left(\widehat{p},s\right) \). Hence \( {Q}_n^i \) is closed. Moreover,

$$ {Q}_n^i\left(\widehat{p},s\right)\subset {\xi}_n^i\left(\widehat{p},s\right)\subset {\widehat{X}}_n^i,\kern0.5em \forall \left(\widehat{p},s\right)\in S\cap \left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right),n\ge 1 $$

and \( {\widehat{X}}_n^i \) is compact; we see that \( {Q}_n^i \) is a compact mapping.

It is obvious that S ∩ (ℝJ + 3 × ℝ+) is compact. Following with just proven result, \( {Q}_n^i \) is closed. Hence \( {Q}_n^i \) is upper semi-continuous.

  • Step 7. Applying Lemma Gale–Nikaido–Debreu for multivalued mapping z n .

It is easy to see that the set ℝJ + 3 × ℝ+ is a closed nonempty convex cone in ℝJ + 4 (which satisfied the condition (i) in Lemma GND).

By the result of step 6, it is easy to see that z n is upper semi-continuous having nonempty convex compact values (the condition (ii) is satisfied).

For every \( \left(\widehat{p},s\right)\in S\cap \left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right) \), note that \( x\in {z}_n\left(\widehat{p},s\right) \) can be written as

$$ x=\left(\sum \limits_{i\in \mathbf{I}}{\widehat{x}}_n^i-\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i-\sum \limits_{j\in \mathbf{J}}{\widehat{y}}_j^n\right)\times \left(-I\right),\kern0.5em \mathrm{where}\;{\widehat{x}}_n^i\in {Q}_n^i\left(\widehat{p},s\right),{\widehat{y}}_j^n\in {\Phi}_j^n(p). $$

Since \( {\widehat{x}}_n^i\in {Q}_n^i\left(\widehat{p},s\right)\subset {\xi}_n^i\left(\widehat{p},s\right) \), we have

$$ {\displaystyle \begin{array}{l}\kern2em \widehat{p}\cdot {\widehat{x}}_n^i\le \widehat{p}\cdot {\widehat{e}}_n^i+p\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n(p)+s=\widehat{p}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}p\cdot {\widehat{y}}_j^n+s\\ {}\Rightarrow \widehat{p}\cdot \sum \limits_{i\in \mathbf{I}}{\widehat{x}}_n^i\le \widehat{p}\cdot \sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i+\sum \limits_{i\in \mathbf{I}}\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}p\cdot {\widehat{y}}_j^n+ Is=\widehat{p}\cdot \sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i+p\cdot \sum \limits_{j\in \mathbf{J}}{\widehat{y}}_j^n+ Is\\ {}\Rightarrow \widehat{p}\cdot \left(\sum \limits_{i\in \mathbf{I}}{\widehat{x}}_n^i-\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i-\sum \limits_{i\in \mathbf{J}}{\widehat{y}}_j^i\right)- Is\le 0\\ {}\Rightarrow \left(\widehat{p},s\right)x\le 0.\end{array}} $$

Hence \( \left(\widehat{p},s\right)x\le 0 \) for every \( \left(\widehat{p},s\right)\in S\cap {\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+} \) and \( x\in {z}_n\left(\widehat{p},s\right) \) (the condition (iii) is satisfied).

Let

$$ {\displaystyle \begin{array}{l}P:= {\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}=\left\{a=\left({a}_1,\dots, {a}_6\right):{a}_6\ge 0\right\}\\ {}{P}^0:= \left\{b=\left({b}_1,\dots, {b}_6\right)\in {\mathrm{\mathbb{R}}}^{J+4}:a\cdot b\le 0,\forall a\in P\right\}.\end{array}} $$

Note, for \( j=\overline{1,J+4},\kern0.5em {\mathbf{1}}_j \), the vector with 1 in component j and 0 elsewhere. By choosing a =  ± 1 j , j = 1, …, J + 4 and a = 1J + 4, since a · b ≤ 0, we obtain

$$ {b}_1=\cdots ={b}_l=0;{b}_{J+4}\le 0. $$

Moreover, \( b\in {\mathbf{O}}_{{\mathrm{\mathbb{R}}}^{J+3}}\times {\mathrm{\mathbb{R}}}_{-} \) satisfies a ⋅ b ≤ 0, ∀ a ∈ P. Hence

$$ {\left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right)}^0={\mathbf{O}}_{{\mathrm{\mathbb{R}}}^{J+3}}\times {\mathrm{\mathbb{R}}}_{-}. $$

Applying the Gale–Nikaido–Debreu Lemma (see Geistdoerfer−Florenzano 1982), we can conclude that there exists \( \left({\widehat{p}}_n,{s}_n\right)\in S\cap \left({\mathrm{\mathbb{R}}}^{J+3}\times {\mathrm{\mathbb{R}}}_{+}\right) \) such that

z n p ̂ n s n O J + 3 × = 0 .

It follows that there exists \( {\widehat{x}}_n\in {\mathrm{\mathbb{R}}}^{J+4} \) such that

$$ {\widehat{x}}_n=\left(\sum \limits_{i\in \mathbf{I}}{\widehat{x}}_n^i-\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i-\sum \limits_{j\in \mathbf{J}}{\widehat{y}}_j^n\right)\times \left(-{Is}_n\right) $$
(A.7.1)
$$ {\widehat{x}}_n^i\in {Q}_n^i\left({p}_n,{s}_n\right) $$
(A.7.2)
$$ \sum \limits_{i\in \mathbf{I}}{\widehat{x}}_n^i-\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i-\sum \limits_{j\in \mathbf{J}}{\widehat{y}}_j^n=0 $$
(A.7.3)

From (3), we have \( \left({\widehat{x}}_n^i,{\widehat{y}}_j^n\right)\in \widehat{A}. \) Since \( \widehat{A} \) is compact, without loss of generality, we may assume that

$$ \left({\widehat{x}}_n^i,{\widehat{y}}_j^n\right)\to \left({\widehat{x}}^{\ast i},{\widehat{y}}_j^{\ast}\right),\kern0.5em i\in \mathbf{I},j\in \mathbf{J}. $$

Since (p n , s n ) ∈ S ∩ (ℝJ + 3 × ℝ+) and S ∩ (ℝJ + 3 × ℝ+) are compact, we can also assume that

$$ \left({\widehat{p}}_n,{s}_n\right)\to \left({\widehat{p}}^{\ast },{s}^{\ast}\right). $$

We will prove the existence of equilibrium with \( \left({\left({\widehat{x}}^{\ast i}\right)}_{i\in \mathbf{I}},{\widehat{p}}^{\ast}\right) \) that has been found.

  • Step 8. Existence of quasi-equilibrium .

From (3), let n → +; we obtain

$$ \sum \limits_{i\in \mathbf{I}}{\widehat{x}}^{\ast i}=\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\widehat{y}}_j^{\ast }; $$
(A.7.4)

hence the condition (a) is satisfied.

From (A.7.2), we have \( {\widehat{x}}_n^i\in {\xi}_n^i\left({\widehat{p}}_n,{s}_n\right) \); this implies

$$ {\widehat{p}}_n\cdot {\widehat{x}}_n^i\le {\widehat{p}}_n\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j^n\left({p}_n\right)+{s}_n,\kern0.5em \forall i\in \mathbf{I}. $$

Letting n → +, we obtain

$$ {\widehat{p}}^{\ast}\cdot {\widehat{x}}^{\ast i}\le {\widehat{p}}^{\ast}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j\left({p}^{\ast}\right)+{s}^{\ast },\kern0.5em \forall i\in \mathbf{I}. $$
(A.7.5)

Let \( {\widehat{x}}^i\in {\widehat{x}}_n^i \) with \( {\widehat{u}}^i\left({\widehat{x}}^i\right)>{\widehat{u}}^i\left({x}_i^{\ast}\right) \). Let λ 0 1 . Define

$$ {\widehat{x}}_{\uplambda}^i:\left(\uplambda {\widehat{x}}^i\right)+\left(1-\uplambda \right){\widehat{x}}^{\ast i}. $$

Since \( {\widehat{u}}^i \) is strictly quasi-concave, we have

u ̂ i x ̂ λ i > u ̂ i x i .

Since \( {\widehat{u}}^i \) is upper semi-continuous and \( {\widehat{x}}_n^i\to {\widehat{x}}^{\ast i}, \) for all n large enough, we have

u ̂ i x ̂ λ i > u ̂ i x ̂ n i .

From (A.7.2), \( {\widehat{x}}_n^i\in {Q}_n^i\left({\widehat{p}}_n,{s}_n\right) \), we obtain

p ̂ n x ̂ λ i p ̂ n e ̂ i + j J θ ij Π j n p n + s n
p ̂ n λ x ̂ i + 1 λ x ̂ i p ̂ n e ̂ i + j J θ ij Π j n p n + s n .

Let n → +; we obtain

p ̂ λ x ̂ i + 1 λ x ̂ i p ̂ n e ̂ i + j J θ ij Π j p + s .
(A.7.6)

Let λ → 0; we have

$$ {\widehat{p}}^{\ast}\cdot {\widehat{x}}^{\ast i}\ge {\widehat{p}}^{\ast}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j\left({p}^{\ast}\right)+{s}^{\ast }. $$
(A.7.7)

Then from (A.7.5) and (A.7.7), follows

$$ {\displaystyle \begin{array}{l}{\widehat{p}}^{\ast}\cdot {\widehat{x}}^{\ast i}\ge {\widehat{p}}^{\ast}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\Pi}_j\left({p}^{\ast}\right)+{s}^{\ast}\kern0.5em \forall i\in \mathbf{I}\\ {}\begin{array}{cc}\iff {\widehat{p}}^{\ast}\cdot {\widehat{x}}^{\ast i}={\widehat{p}}^{\ast}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\widehat{p}}^{\ast}\cdot {\widehat{y}}_j^{\ast }+{s}^{\ast }& \forall i\in \mathbf{I}\end{array}.\end{array}} $$
(A.7.8)

Hence

$$ {\displaystyle \begin{array}{c}{\widehat{p}}^{\ast}\cdot \sum \limits_{i\in \mathbf{I}}{\widehat{x}}^{\ast i}={\widehat{p}}^{\ast}\cdot \sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i+\sum \limits_{i\in \mathbf{I}}\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}{\widehat{p}}^{\ast}\cdot {\widehat{y}}_j^{\ast }+{Is}^{\ast}\kern0.5em \forall i\in \mathbf{I}\\ {}\iff {\widehat{p}}^{\ast}\cdot \left(\sum \limits_{i\in \mathbf{I}}{\widehat{x}}^{\ast i}-\sum \limits_{i\in \mathbf{I}}{\widehat{e}}^i-\sum \limits_{i\in \mathbf{I}}{\widehat{y}}_j^{\ast}\right)={Is}^{\ast }.\end{array}} $$

From (A.7.4), follows

$$ {s}^{\ast }=0. $$

Since \( \left({\widehat{p}}^{\ast },{s}^{\ast}\right)\in S \), it follows that \( {\widehat{p}}^{\ast}\ne 0 \)

Moreover, by substituting λ=1 and s = 0 into (A.7.6), we obtain that

$$ {\widehat{p}}^{\ast}\cdot {\widehat{x}}^i\ge {\widehat{p}}^{\ast}\cdot {\widehat{e}}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}\sup\;\left({p}^{\ast}\cdot {Y}_j\right) $$

for all \( {\widehat{x}}^i\in {\widehat{x}}^i \) with \( {\widehat{u}}^i\left({\widehat{x}}^i\right)>{\widehat{u}}^i\left({\widehat{x}}^{\ast i}\right). \) Hence the condition (b) is satisfied.

Thus \( \left({\left({\widehat{x}}^{\ast i}\right)}_{i\in \mathbf{I}},{\widehat{p}}^{\ast}\right) \) is a quasi-equilibrium.

1.2 Appendix 7.2: Proof of Proposition 7.2

From Proposition 7.1, there exists a quasi-equilibrium (with dividends) \( \left({\left({x}^{\ast i},{d}^{\ast i}\right)}_{i\in \mathbf{I}},{\left({y}_j^{\ast },0\right)}_{j\in \mathbf{J}},\left({p}^{\ast },{q}^{\ast}\right)\right) \) which satisfies

  1. 1.

    \( \sum \limits_{i\in \mathbf{I}}{x}^{\ast i}=\sum \limits_{i\in \mathbf{I}}{e}^i+\sum \limits_{j\in \mathbf{J}}{y}_j^{\ast };\sum \limits_{i\in \mathbf{I}}{d}^{\ast i}=\sum \limits_{i\in \mathbf{I}}{\delta}^i \)

  2. 2.

    For any iI

$$ {p}^{\ast}\cdot {x}^{\ast i}+{q}^{\ast }{d}^{\ast i}={p}^{\ast}\cdot {e}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}\sup \left({p}^{\ast}\cdot {Y}_j\right)+{q}^{\ast }{\delta}^i. $$

For each (xi, di) ∈ Xi × ℝ+, with \( {\widehat{u}}^i\left({x}^i,{d}^i\right)>{\widehat{u}}^i\left({x}^{\ast i},{d}^{\ast i}\right), \) it holds

$$ {p}^{\ast}\cdot {x}^i+{q}^{\ast }{d}^i\ge {p}^{\ast}\cdot {e}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}\sup \left({p}^{\ast}\cdot {Y}_j\right)+{q}^{\ast }{\delta}^i. $$
  1. 3.

    For any \( j\in \mathbf{J}:{p}^{\ast}\cdotp {y}_j^{\ast }=\sup \left({p}^{\ast}\cdotp {Y}_j\right). \)

We will prove that q = 0 and p ≠ 0.

If xi ∉ Si, then there exists xi ∈ Xi : ui(xi) > ui(xi). Let \( \left({x}^i,0\right)\in {\widehat{X}}^i:{u}^i\left({x}^i\right)=\widehat{u}\left({x}^i,0\right)>\widehat{u}\left({x}^{\ast i},{d}^{\ast i}\right)=u\left({x}^{\ast i}\right). \) We then have

$$ {\displaystyle \begin{array}{c}{p}^{\ast}\cdot {x}^i\ge {p}^{\ast}\cdot {e}^i+\sum \limits_{j\in \mathbf{J}}{\theta}_{ij}\sup \left({p}^{\ast}\cdot {Y}_j\right)+{q}^{\ast }{\delta}^i\\ {}={p}^{\ast}\cdot {x}^{\ast i}+{q}^{\ast }{d}^{\ast i}.\end{array}} $$

Let xλ = λxi + (1 − λ)xi for any λ ∈ ]0, 1[. From the concavity of u, we have

$$ u\left({x}_{\uplambda}\right)=u\left(\uplambda {x}^i+\left(1-\uplambda \right){x}^{\ast i}\right)\ge \uplambda u\left({x}^i\right)+\left(1-\uplambda \right)u\left({x}^{\ast i}\right)>u\left({x}^{\ast i}\right). $$

We then have

p x λ p x i + q d i p λ x i + 1 λ x i p x i + q d i .

Letting λ converge to 0, we obtain qdi ≤ 0. Hence qdi = 0 for all iI. Because

i ∈ Idi = ∑i ∈ Iδi > 0, then q = 0.

If p = 0, we then have qδi = qdi = 0, ∀ i ∈ I; it implies q = 0 contradiction with (p, q) ≠ (0, 0).

Hence we obtain \( \left({\left({x}^{\ast i}\right)}_{i\in \mathbf{I}},{\left({y}_j^{\ast}\right)}_{j\in \mathbf{J}},{p}^{\ast}\right) \) is a quasi-equilibrium.

1.3 Appendix 7.3: Proof of Lemma 7.2

Consider the problem of firm j. The FOCs give (for all jJ)

$$ {\displaystyle \begin{array}{l}{p}_j{A}_j\frac{\partial F}{\partial K}\left({K}_j,{L}_j\right)=r\\ {}{p}_j{A}_j\frac{\partial F}{\partial L}\left({K}_j,{L}_j\right)=w.\end{array}} $$

This implies

$$ {p}_j{A}_j\frac{\partial F}{\partial K}\left(\frac{K_j}{L_j},1\right)=r $$
(A.7.9)
$$ {p}_j{A}_j\frac{\partial F}{\partial L}\left(1,\frac{K_j}{L_j}\right)=w. $$
(A.7.10)

Dividing (A.7.9) by (A.7.10), we obtain

$$ \frac{r}{w}=\frac{\frac{\partial F}{\partial K}\left(\frac{K_j}{L_j},1\right)}{\frac{\partial F}{\partial L}\left(1,\frac{L_j}{K_j}\right)},\kern0.5em \forall j\in \mathbf{J}. $$

Hence

$$ \frac{K_1}{L_1}=\frac{K_2}{L_2}=\cdots =\frac{K_J}{L_J}=\Phi \left(\frac{r}{w}\right), $$

and

$$ \frac{K_1+{K}_2+\dots +{K}_J}{L_1+{L}_2+\dots +{L}_J}=\frac{\overline{K}}{L}=\Phi \left(\frac{r}{w}\right). $$

Observe that

$$ {rK}_j+{wL}_j={p}_j{A}_jF\left({K}_j,{L}_j\right),\kern0.5em \forall j\in \mathbf{J} $$

or

$$ {\displaystyle \begin{array}{r}r\frac{K_j}{L_j}+w={p}_j{A}_jF\left(\frac{K_j}{L_j},1\right),\kern0.5em \forall j\in \mathbf{J}\\ {}\Rightarrow \begin{array}{cc}r\frac{\overline{K}}{L}+w={p}_j{A}_jF\left(\frac{\overline{K}}{L},1\right),& \forall j\in \mathbf{J}\end{array}.\end{array}} $$

Hence p1A1 = p2A2 = … = p J A J . Write ς = p1A1 = p2A2 = … = p J A J . We also have

$$ {\displaystyle \begin{array}{l}F\left({K}_1,{L}_1\right)+F\left({K}_2,{L}_2\right)+\cdots +F\left({K}_J,{L}_J\right)\\ {}={L}_1F\left(\frac{K_1}{L_1},1\right)+{L}_2F\left(\frac{K_2}{L_2},1\right)+\cdots +{L}_JF\left(\frac{K_J}{L_J},1\right)\\ {}={L}_1F\left(\frac{\overline{K}}{L},1\right)+{L}_2F\left(\frac{\overline{K}}{L},1\right)+\cdots +{L}_JF\left(\frac{\overline{K}}{L},1\right)\\ {}=\left({L}_1+{L}_2+\cdots +{L}_J\right)F\left(\frac{\overline{K}}{L},1\right)= LF\left(\frac{\overline{K}}{L},1\right)=F\left(\overline{K},L\right)\end{array}} $$

and

$$ {\displaystyle \begin{array}{rl} cr\overline{K}+ wL& ={p}_1{A}_1F\left({K}_1,{L}_1\right)+{p}_2{A}_2F\left({K}_2,{L}_2\right)+\cdots +{p}_J{A}_JF\left({K}_J,{L}_J\right)\\ {}& =\varsigma \left(F\left({K}_1,{L}_1\right)+F\left({K}_2,{L}_2\right)+\cdots +F\left({K}_J,{L}_J\right)\right)\\ {}& =\varsigma F\left(\overline{K},L\right).\end{array}} $$

The budget constraint

$$ {p}_1{c}_1+{p}_2{c}_2+\dots +{p}_J{c}_J\le \varsigma F\left(\overline{K},L\right). $$

Dividing by ς = p1A1 = p2A2 = … = p J A J , we get

$$ \frac{c_1}{A_1}+\frac{c_2}{A_2}+\dots +\frac{c_J}{A_J}\le F\left(\overline{K},L\right). $$

1.4 Appendix 7.4: Proof of Proposition 7.5

1. Consider the problem of consumer

$$ \underset{c_1,{c}_2,L\ge 0}{\max}\ln \left({c}_1\right)+\beta \ln \left({c}_2\right) $$

subject to

$$ \frac{c_1}{A_1}+\frac{c_2}{A_2}={\overline{K}}^{\alpha }{L}^{1-\alpha } $$
(A.7.11)
$$ {a}_1{c}_1+{a}_2{c}_2+L=\overline{L}. $$
(A.7.12)

We have the FOCs (λ1 > 0, λ2 > 0, λ3 > 0)

$$ \frac{1}{c_1}={\uplambda}_2\frac{1}{A_1}+{\uplambda}_3{a}_1 $$
(A.7.13)
$$ \frac{\beta }{c_2}={\uplambda}_2\frac{1}{A_2}+{\uplambda}_3{a}_2 $$
(A.7.14)
$$ {\uplambda}_1={\uplambda}_2\alpha {\overline{K}}^{\alpha -1}{L}^{1-\alpha } $$
(A.7.15)
$$ {\uplambda}_3={\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }. $$
(A.7.16)

From (A.7.13) and (A.7.14), we have

$$ {\displaystyle \begin{array}{l}1={\uplambda}_2\frac{c_1}{A_1}+{\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_1{c}_1\\ {}\beta ={\uplambda}_2\frac{c_2}{A_2}+{\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_2{c}_2\end{array}} $$

which implies that

$$ 1+\beta ={\uplambda}_2\left(\frac{c_1}{A_1}+\frac{c_2}{A_2}\right)+{\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha}\left({a}_1{c}_1+{a}_2{c}_2\right). $$

Combining with (A.7.11) and (A.7.12), we have

$$ {\displaystyle \begin{array}{c}1+\beta ={\uplambda}_2{\overline{K}}^{\alpha }{L}^{1-\alpha }+{\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha}\left(\overline{L}-L\right)\\ {}\iff \frac{1}{\uplambda_2}=\frac{1}{1+\beta }{\overline{K}}^{\alpha }{L}^{-\alpha}\left[\alpha L+\left(1-\alpha \right)\overline{L}\right].\end{array}} $$
(A.7.17)

In the other side, consider (A.7.13) and (A.7.14):

$$ {\displaystyle \begin{array}{c}{c}_1=\frac{A_1}{\uplambda_2+{\uplambda}_3{a}_1{A}_1}=\frac{A_1}{\uplambda_2+{\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_1{A}_1}\\ {}=\frac{1}{\uplambda_2}\frac{A_1}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_1{A}_1}\end{array}} $$
(A.7.18)
$$ {\displaystyle \begin{array}{c}{c}_2=\frac{\beta {A}_2}{\uplambda_2+{\uplambda}_3{a}_2{A}_2}=\frac{\beta {A}_2}{\uplambda_2+{\uplambda}_2\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_2{A}_2}\\ {}=\frac{1}{\uplambda_2}\frac{\beta {A}_2}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_2{A}_2}\end{array}} $$
(A.7.19)

substituting c1 and c2 into the equation (A.7.11)

$$ {\displaystyle \begin{array}{l}\kern2.5em \frac{1}{\uplambda_2}\frac{1}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_1{A}_1}+\frac{1}{\uplambda_2}\frac{\beta }{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_2{A}_2}\\ {}={\overline{K}}^{\alpha }{L}^{1-\alpha}\iff \frac{1}{1+\beta }{\overline{K}}^{\alpha }{L}^{-\alpha}\left[\alpha L+\left(1-\alpha \right)\overline{L}\right]\\ {}\begin{array}{ll}& \times \left(\frac{1}{1+{\left(1-\alpha \right)}^{\alpha }{L}^{-\alpha }{a}_1{A}_1}+\frac{\beta }{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_2{A}_2}\right)\\ {}& ={\overline{K}}^{\alpha }{L}^{1-\alpha}\iff \frac{1}{1+\beta}\left[\frac{1}{1+{\left(1-\alpha \right)}^{\alpha }{L}^{-\alpha }{a}_1{A}_1}+\frac{\beta }{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{-\alpha }{a}_2{A}_2}\right]\\ {}& =\frac{L}{\alpha L+\left(1-\alpha \right)\overline{L}}.\end{array}\end{array}} $$

We obtain

$$ \frac{1}{1+\beta}\cdot \frac{\beta }{L^{\alpha }+\left(1-\alpha \right){a}_1{A}_1{\overline{K}}^{\alpha }1}+\frac{\beta }{1+\beta}\cdot \frac{1}{L^{\alpha }+\left(1-\alpha \right){a}_2{A}_2{\overline{K}}^{\alpha }}=\frac{L^{1-\alpha }}{\alpha L+\left(1-\alpha \right)\overline{L}}. $$
(A.7.20)

Equation (A.7.20) allows us to identify L. Denote

$$ {\displaystyle \begin{array}{l}{B}_j=\left(1-\alpha \right){a}_j{A}_j{\overline{K}}^{\alpha },j=1,2\\ {}{\beta}_1=\frac{1}{1+\beta };\kern0.5em {\beta}_2=\frac{\beta }{1+\beta }.\end{array}} $$

Consider the function

$$ f\left(L,{B}_1,{B}_2\right)=\frac{\beta_1}{L^{\alpha }+{B}_1}+\frac{\beta_2}{L^{\alpha }+{B}_2}-\frac{L^{1-\alpha }}{\alpha L+\left(1-\alpha \right)\overline{L}}. $$

We have

$$ {\displaystyle \begin{array}{c}f\left(0,{B}_1,{B}_2\right)=\frac{\beta_1}{B_1}+\frac{\beta_2}{B_2}>0\\ {}f\left(\overline{L},{B}_1,{B}_2\right)=\frac{-{\beta}_1}{L^{\alpha }+{B}_1}+\frac{\beta_2}{{\overline{L}}^{\alpha }+{B}_2}-\frac{L^{1-\alpha }}{\alpha \overline{L}+\left(1-\alpha \right)L}\\ {}<\frac{\beta_1}{{\overline{L}}^{\alpha }}+\frac{\beta_2}{{\overline{L}}^{\alpha }}-\frac{1}{\alpha }=0.\end{array}} $$

Equation (A.7.20) has a solution \( {L}^{\ast }=L\left({B}_1,{B}_2\right)\in \left(0,\overline{L}\right). \) From Proposition 7.3, \( {L}^{\ast}\in \left(0,\overline{L}\right) \) is the unique solution to (A.7.20).

1.5 Appendix 7.5: Proof of Proposition 7.6

  1. (i)

    We now claim that L is decreasing in B j , for j = 1, 2. By using partial derivatives of f(L(B1, B2), B1, B2) = 0 with respect to B1, we have

$$ {\displaystyle \begin{array}{l}\kern2.12em \left[-\frac{{\alpha \beta}_1{L}^{\alpha -1}}{{\left({L}^{\alpha }+{B}_1\right)}^2}-\frac{{\alpha \beta}_2{L}^{\alpha -1}}{{\left({L}^{\alpha }+{B}_2\right)}^2}-\frac{{\left(1-\alpha \right)}^2\overline{L}{L}^{-\alpha }-{\alpha}^2{L}^{1-\alpha }}{{\left(\alpha L+\left(1-\alpha \right)\overline{L}\right)}^2}\right]\frac{\partial L}{\partial {B}_1}\\ {}-\frac{\beta }{{\left({L}^{\alpha }+{B}_1\right)}^2}=0\iff \left[\frac{{\alpha \beta}_1}{{\left({L}^{\alpha }+{B}_1\right)}^2}-\frac{{\alpha \beta}_2}{{\left({L}^{\alpha }+{B}_2\right)}^2}-\frac{{\left(1-\alpha \right)}^2\overline{L}{L}^{1-2\alpha }-{\left(\alpha {L}^{1-\alpha}\right)}^2}{{\left(\alpha L+\left(1-\alpha \right)\overline{L}\right)}^2}\right]\\ {}\times \frac{\partial L}{\partial {B}_1}=\frac{\beta {L}^{1-\alpha }}{{\left({L}^{\alpha }+{B}_1\right)}^2}.\end{array}} $$
(A.7.21)

We will prove that

$$ \frac{{\alpha \beta}_1}{{\left({L}^{\alpha }+{B}_1\right)}^2}-\frac{{\alpha \beta}_2}{{\left({L}^{\alpha }+{B}_2\right)}^2}\ge \frac{{\left(\alpha {L}^{1-\alpha}\right)}^2}{{\left(\alpha L+\left(1-\alpha \right)\overline{L}\right)}^2}. $$
(A.7.22)

Indeed

$$ {\displaystyle \begin{array}{c}{\left(\frac{\alpha {L}^{1-\alpha }}{\alpha L+\left(1-\alpha \right)\overline{L}}\right)}^2={\left(\frac{{\alpha \beta}_1}{L^{\alpha }+{B}_1}+\frac{{\alpha \beta}_2}{L^{\alpha }+{B}_2}\right)}^2\\ {}\le \alpha \left(\frac{{\alpha \beta}_1}{{\left({L}^{\alpha }+{B}_1\right)}^2}+\frac{{\alpha \beta}_2}{{\left({L}^{\alpha }+{B}_2\right)}^2}\right)\\ {}\le \frac{{\alpha \beta}_1}{{\left({L}^{\alpha }+{B}_1\right)}^2}+\frac{{\alpha \beta}_2}{{\left({L}^{\alpha }+{B}_2\right)}^2}\end{array}} $$

that gives us (A.7.22). Hence \( \frac{\partial L}{\partial {B}_1}<0. \) By using the same argument with B2, we get \( \frac{\partial L}{\partial {B}_j}<0 \)for all j = 1, 2. When a j increases, B j increases, and L decreases.Consider the problem of firm j:

$$ \underset{K_j,{L}_j\ge 0}{\max }{p}_j{A}_j{K}_j^{\alpha }{L}_j^{1-\alpha }-{rK}_j-{wL}_j. $$

The FOC is following:

$$ {\displaystyle \begin{array}{l}\alpha {p}_j{A}_j{K}_j^{\alpha -1}{L}_j^{1-\alpha }=r\\ {}\left(1-\alpha \right){p}_j{A}_i{K}_j^{\alpha }{L}_j^{-\alpha }=w.\end{array}} $$

We obtain

$$ {\displaystyle \begin{array}{l}\frac{r}{w}=\frac{\alpha }{1-\alpha}\frac{L_j}{K_j}\\ {}{\alpha}^{\alpha }{\left(1-\alpha \right)}^{1-\alpha }{p}_j{A}_j={r}^{\alpha }{w}^{1-\alpha }.\end{array}} $$

Hence

$$ {\displaystyle \begin{array}{l}\frac{K_1}{L_1}=\frac{K_2}{L_2}=\frac{K_1+{K}_2}{L_1+{L}_2}=\frac{\overline{K}}{L}=\frac{\alpha }{1-\alpha}\frac{w}{r}\\ {}{p}_1{A}_1={p}_2{A}_2=\frac{r^{\alpha }{w}^{1-\alpha }}{\alpha^{\alpha }{\left(1-\alpha \right)}^{1-\alpha }}.\end{array}} $$

We can represent w and r as functions of L and \( \overline{K} \) as follows:

$$ {\displaystyle \begin{array}{c}w={\alpha}^{\alpha }{\left(1-\alpha \right)}^{1-\alpha }{p}_j{A}_j{\left(\frac{w}{r}\right)}^{\alpha }={\alpha}^{\alpha }{\left(1-\alpha \right)}^{1-\alpha }{p}_j{A}_j{\left(\frac{1-\alpha }{\alpha}\frac{\overline{K}}{L}\right)}^{\alpha}\\ {}=\left(1-\alpha \right){p}_j{A}_j{\left(\frac{\overline{K}}{L}\right)}^{\alpha}\end{array}} $$
(A.7.23)
$$ {\displaystyle \begin{array}{c}r=\frac{L}{\overline{K}}\frac{\alpha }{1-\alpha }w=\frac{L}{\overline{K}}\frac{\alpha }{1-\alpha}\left(1-\alpha \right){p}_j{A}_j{\left(\frac{\overline{K}}{L}\right)}^{\alpha}\\ {}=\alpha {p}_j{A}_j{\left(\frac{L}{\overline{K}}\right)}^{1-\alpha }.\end{array}} $$
(A.7.24)

This implies that w increases and r decreases when L decreases.

  1. (ii)

    From Eqs. (A.7.18), (A.7.19) and (A.7.20),

$$ {\displaystyle \begin{array}{l}{c}_1^{\ast }=\frac{1}{1+\beta}\frac{A_1{\overline{K}}^{\alpha }{L}^{\ast -\alpha}\left[\alpha {L}^{\ast }+\left(1-\alpha \right)\overline{L}\right]}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{\ast -\alpha }{a}_1{A}_1}\\ {}{c}_2^{\ast }=\frac{\beta }{1+\beta}\frac{A_2{\overline{K}}^{\alpha }{L}^{\ast -\alpha}\left[\alpha {L}^{\ast }+\left(1-\alpha \right)\overline{L}\right]}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{\ast -\alpha }{a}_2{A}_2}.\end{array}} $$

Market clearing conditions give

$$ {\displaystyle \begin{array}{c}{L}_1^{\ast }=\frac{c_1^{\ast }}{A_1{\overline{K}}^{\alpha }{L}^{\ast -\alpha }}=\frac{1}{1+\beta}\frac{\left[\alpha {L}^{\ast }+\left(1-\alpha \right)\overline{L}\right]}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{\ast -\alpha }{a}_1{A}_1}\\ {}{L}_2^{\ast }=\frac{c_1^{\ast }}{A_1{\overline{K}}^{\alpha }{L}^{\ast -\alpha }}=\frac{\beta }{1+\beta}\frac{\left[\alpha {L}^{\ast }+\left(1-\alpha \right)\overline{L}\right]}{1+\left(1-\alpha \right){\overline{K}}^{\alpha }{L}^{\ast -\alpha }{a}_2{A}_2}.\end{array}} $$

If a1 increases, L decreases and L∗ − αa1 increases, this implies that \( {L}_1^{\ast } \) decreases.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le-Van, C., Nguyen, TDH., Pham, NS., Tran-Nam, B. (2018). A General Equilibrium Model in Which Consumption Takes Time. In: Tran-Nam, B., Tawada, M., Okawa, M. (eds) Recent Developments in Normative Trade Theory and Welfare Economics. New Frontiers in Regional Science: Asian Perspectives, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-10-8615-1_7

Download citation

Publish with us

Policies and ethics