Skip to main content

Bioremediation: Green and Sustainable Technology for Textile Effluent Treatment

  • Chapter
  • First Online:

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

In recent decades, textile industrial sectors are getting increasing interest worldwide in global contest due to the diverse and changing world market conditions in terms of price, design, ease of handling, durability, and product safety. The increasing ecological and health concerns related to the use of large amounts of dyes (Synthetic as well as natural) in textile industries to counter the growing demands of people lead to the design, development and establishment of new dyeing strategies; and technologies in addition of reducing the load of effluents in wastewaters. Textile industrial sectors and its associated wastewaters have become an increasing cause of main sources of severe pollution worldwide. The effluents produced from these textile wet processing industries are very diverse in chemical composition, ranging from inorganic finishing agents, surfactants, chlorine compounds, salts, total phosphate to polymers and organic products. Most of the techniques used for removal of dye effluents from wastewaters were physico-chemical methods which are costly and cause an accumulation of concentrated sludge. Hence there is need to develop alternative treatments plans and strategies that are are cost effective and environmentally benign. In this paper authors review the advancements in eco-friendly and sustainable technologies used for minimizing the negative environmental impact of wastewater from textile sectors by biological and combination systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rather LJ, Islam S, Akhter S, Hassan QP, Mohammad F (2017) Chemistry of plant dyes: applications and environmental implications of dyeing processes. Curr Environ Eng 4:103–120

    Article  CAS  Google Scholar 

  2. Rather LJ, Islam S, Shabbir M, Bukhari MN, Shahid M, Khan MA, Mohammad F (2016) Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. J Environ Chem Eng 4:3041–3049

    Article  CAS  Google Scholar 

  3. Ahlstrom L, Eskilsson CS, Bjorklund E (2005) Determination of banned azo dyes in consumer goods. Trend Anal Chem 24:49–56

    Article  CAS  Google Scholar 

  4. Pierce J (1994) Colour in textile effluents—the origins of the problem. J Soc Dyers Col 110:131–134

    Article  CAS  Google Scholar 

  5. Shahid M, Islam S, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  6. Ibrahim NA, Moneim NMA, Halim ESA, Hosni MM (2008) Pollution prevention of cotton-cone reactive dyeing. J Cleaner Prod 16:1321–1326

    Article  Google Scholar 

  7. Hu TL, Wu SC (2001) Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium Anabaena sp. Biores Technol 77:93–95

    Article  CAS  Google Scholar 

  8. Razo-Flores E, Donlon B, Lettinga G, Field JA (1997) Biotransformation and biodegradation of N substituted aromatics in methanogenic granular sludge. FEMS Microbiol Rev 20:525–538

    Article  CAS  Google Scholar 

  9. Benigni R, Giuliani A, Franke R, Gruska A (2000) Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines. Chem Rev 100:3697–3714

    Article  CAS  Google Scholar 

  10. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    CAS  Google Scholar 

  11. Chung KT, Stevens SE Jr (1993) Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  12. Hillenbrand T (1999) Die Abwassersituation in der deutschen Papier-, Textil- und Lederindustrie. Gwf Wasser Abwasser 14:267–273

    Google Scholar 

  13. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  14. Zhang X, Stebbing DW, Saddler JN, Beatson RP, Kruus K (2000) Enzyme treatments of the dissolved and colloidal substances present in mill white water and the effects on the resulting paper properties. J Wood Chem Technol 20:321–335

    Article  CAS  Google Scholar 

  15. Knackmus HJ (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol 51:287–295

    Article  Google Scholar 

  16. Keck AA, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphtalenesulfonic acid degradation pathway of Sphingomonas sp. Strain BN6. Appl Environ Microbiol 63:3684–3690

    CAS  Google Scholar 

  17. Nigam P, McMullan G, Banat IM, Marchant R (1996) Decolourisation of effluent from the textile industry by a microbial consortium. Biotechnol Lett 18:117–120

    Article  CAS  Google Scholar 

  18. Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    Article  CAS  Google Scholar 

  19. Zheng Z, Levin RE, Pinkham JL, Shetty K (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem 34:31–37

    Article  CAS  Google Scholar 

  20. Nigam P, Marchant R (1995) Selection of a substratum for composing biofilm system of a textileeffluent decolourizing bacteria. Biotechnol Lett 17:993–996

    Article  CAS  Google Scholar 

  21. Kudlich M, Bishop E, Knackmuss HJ, Stolz A (1996) Simultaneous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from naphtalenesulfonate-degrading mixed culture. Appl Microbiol Biotechnol 46:597–603

    Article  CAS  Google Scholar 

  22. Shen CF, Miguez CB, Borque D, Groleau D, Guiol SR (1996) Methanotroph and methanogen coupling in granular biofilm under oxygen-limited conditions. Biotechnol Lett 18:495–500

    Article  CAS  Google Scholar 

  23. Tan CG, Lettinga G, Field JA (1999) Reduction of the azo dye Mordant Orange 1 by methanogenic granular sludge exposed to oxygen. Biores Technol 67:35–42

    Article  CAS  Google Scholar 

  24. Walker GM, Weatherly LR (1999) Biological activated carbon treatment of industrial wastewater in stirred tank reactors. Chem Eng J 75:201–206

    Article  CAS  Google Scholar 

  25. Tse SW, Yu J (1997) Flocculation of Pseudomonas with aluminum sulfate for enhanced biodegradation of synthetic dyes. Biotechnol Tech 11:479–482

    Article  CAS  Google Scholar 

  26. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dye containing effluents a review. Biores Technol 58:217–227

    Article  CAS  Google Scholar 

  27. Martins MAM, Cardoso MH, Queiroz MJ, Ramalho MT, Campos AMO (1999) Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere 38:2455–2460

    Article  CAS  Google Scholar 

  28. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Tec 30:449–505

    Article  CAS  Google Scholar 

  29. Slokar YM, Marechal AML (1998) Methods of decoloration of textile wastewaters. Dyes Pigm 37:335–356

    Article  CAS  Google Scholar 

  30. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    Article  CAS  Google Scholar 

  31. Donlagic J, Levec J (1998) Does the catalytic wet oxidation yield products more amenable to biodegradation. Appl Catal B Environ 17:L1–L5

    Article  CAS  Google Scholar 

  32. Kunz A, Reginatto V, Durán N (2001) Combined treatment of textile effluent using the sequence Phanerochaete chrysosporium—ozone. Chemosphere 44:281–287

    Article  CAS  Google Scholar 

  33. Ledakowicz S, Solecka M, Zylla R (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J Biotechnol 89:175–184

    Article  CAS  Google Scholar 

  34. Pulgarin C, Invernizzi M, Parra S, Sarria V, Polania R, Püringer P (1999) Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catal Today 54:341–352

    Article  CAS  Google Scholar 

  35. Van der Bruggen B, De Vreese I, Vandecasteele C (2001) Water reclamation in the textile industry: nanofiltration of dye baths for wool dyeing. Ind Eng Chem Res 40:3973–3978

    Article  Google Scholar 

  36. Bumpus JA (1995) Microbial degradation of azo dyes. Prog Ind Microbiol 32:157–176

    Article  CAS  Google Scholar 

  37. Chung KT, Stevens SE Jr (1993) Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  38. Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Biores Technol 99:5296–5308

    Article  CAS  Google Scholar 

  39. Radhika V, Subramanian S, Natarajan KA (2006) Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies. Water Res 40:3628–3636

    Article  CAS  Google Scholar 

  40. Field JA, Stams AJM, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 67:47–77

    Article  CAS  Google Scholar 

  41. Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms, 10th ed. Prentice-Hall Inc., Simon & Schuster/A Viacom Company, Upper Saddle River, New Jersey, USA

    Google Scholar 

  42. Chung KT, Stevens SEJ (1993) Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  43. Claus H, Faber G, Koenig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  CAS  Google Scholar 

  44. Knackmuss HJ (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol 51:287–295

    Article  CAS  Google Scholar 

  45. Lourenco ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89:163–174

    Article  CAS  Google Scholar 

  46. Panswad T, Iamsamer K, Anotai J (2001) Decolorization of azo-reactive dye by polyphosphate- and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor. Biores Technol 76:151–159

    Article  CAS  Google Scholar 

  47. Tan CG, Lettinga G, Field JA (1999) Reduction of the azo dye mordant orange 1 by methanogenic granular sludge exposed to oxygen. Biores Technol 67:35–42

    Article  CAS  Google Scholar 

  48. Zimmermann T, Gasser F, Kulla HG, Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    Article  CAS  Google Scholar 

  49. Blumel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae k24. Appl Microbiol Biotechnol 62:186–190

    Article  CAS  Google Scholar 

  50. Pasti-Grigsby MB, Pasczcynski A, Gosczcynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo-dye degradability by Streptomyces spp and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    CAS  Google Scholar 

  51. Cao W, Mahadevan B, Crawford DL, Crawford RL (1993) Characterization of an extracellular azo-dyeoxidizing peroxidase from Flavobacterium sp. ATCC 39723. Enzyme Microb Technol 15:810–817

    Article  CAS  Google Scholar 

  52. Duran N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microbiol Technol 31:907–931

    Article  CAS  Google Scholar 

  53. Glenn JK, Akileswaran L, Gold MH (1986) Manganese-Ii oxidation is the principal function of the extracellular manganese peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    Article  CAS  Google Scholar 

  54. Heinfling A, Bergbauer M, Szewzyk U (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 48:261–266

    Article  CAS  Google Scholar 

  55. Parshetti GK, Kalme SD, Gomare SS, Govindwar SP (2007) Biodegradation of Reactive blue-25 by Aspergillus achraceus NCIM-1446. Biores Technol 98:3638–3642

    Article  CAS  Google Scholar 

  56. Kapoor A, Viraraghavan T (1995) Biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Biores Technol 53(3):195–206

    CAS  Google Scholar 

  57. Marcanti-Contato I, Corso CR, Oliveira JE (1997) Induction of physical paramorphogenesis in Aspergillus sp. Braz J Microbiol 28:65–67

    Google Scholar 

  58. Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal process. Biotechnol Adv 22:1–91

    Article  Google Scholar 

  59. Ruiz J, Alvarez P, Arbib Z, Garrido C, Barragan J, Perales JA (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytorem 13:884–896

    Article  CAS  Google Scholar 

  60. Khalaf MA (2008) Biosorption of reactive dye from textile wastewater by nonviable biomass of Aspergillus niger and Spirogyra sp. Biores Technol 99:6631–6634

    Article  CAS  Google Scholar 

  61. Aravindhan R, Rao JR, Nair BU (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142:68–76

    Article  CAS  Google Scholar 

  62. Marungrueng K, Pavasant P (2006) Removal of basic dye (Astrazon Blue FRGL) using macroalga Caulerpa lentillifera. J Environ Manage 78:268–274

    Article  CAS  Google Scholar 

  63. Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Proc Biochem 39:623–631

    Article  CAS  Google Scholar 

  64. Karacakaya P, Kilic NK, Duyugu E, Donmez G (2009) Stimulation of reactive dye removal by cyanobacteria in media containing triacontrol hormone. J Hazard Mater 172:1635–1639

    Article  CAS  Google Scholar 

  65. Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    CAS  Google Scholar 

  66. Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  67. Mester T, Tien M (2000) Oxidative mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeter Biodegr 46:51–59

    Article  CAS  Google Scholar 

  68. Li K, Xu F, Eriksson KEL (1999) Comparison of fungal laccases and redox mediators in oxidation of a non-phenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    CAS  Google Scholar 

  69. Soares GMB, De Amorim MTP, Costa FM (2001) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89(2–3):123–129

    Article  CAS  Google Scholar 

  70. Berry DF, Francis AJ, Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59

    CAS  Google Scholar 

  71. Commandeur ICM, Parsons JR (1990) Degradation of halogenated aromatic compounds. Biodeg 1:207–220

    Article  CAS  Google Scholar 

  72. Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodeg 1:191–206

    Article  CAS  Google Scholar 

  73. Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. Strain BN6 and effect of artificial redox mediators on the rate of azo-dye reduction. Appl Environ Microbiol 63:3691–3694

    CAS  Google Scholar 

  74. Beydilli MI, Pavlostathis SG, Tincher WC (1998) Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci Technol 38:225–232

    CAS  Google Scholar 

  75. Bromley-Challenor KCA, Knapp JS, Zhang Z, Gray NCC, Hetheridge MJ, Evans MR (2000) Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Res 34:4410–4418

    Article  CAS  Google Scholar 

  76. Gingell R, Walker R (1971) Mechanism of azo reduction by Streptococcus faecalis II. The role of soluble flavins. Xenobiotica 1:231–239

    Article  CAS  Google Scholar 

  77. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  78. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    Article  CAS  Google Scholar 

  79. Rau J, Stolz A (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 69:3448–3455

    Article  CAS  Google Scholar 

  80. Dos Santos AB, Cervantes FJ, Yaya-Beas RE, Van Lier JB (2003) Effect of redox mediator, AQDS, on the decolourisation of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor. Enzyme Microbiol Technol 33:942–951

    Article  Google Scholar 

  81. Yoo ES (2002) Chemical decolorization of the azo dye CI Reactive Orange 96 by various organic/inorganic compounds. J Chem Technol Biotechnol 77:481–485

    Article  CAS  Google Scholar 

  82. Van der Zee FP, Bisschops IAE, Blanchard VG, Bouwman RHM, Lettinga G, Field JA (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109

    Article  Google Scholar 

  83. Albuquerque MGE, Lopes AT, Serralheiro ML, Novais JM, Pinheiro HM (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic–aerobic sequencing batch reactors. Enzyme Microbiol Technol 36:790–799

    Article  CAS  Google Scholar 

  84. Dos Santos AB, Bisschops IAE, Cervantes FJ, Van Lier JB (2005) The transformation and toxicity of anthraquinone dyes during thermophilic (55 ℃) and mesophilic (30 ℃) anaerobic treatments. J Biotechnol 15:345–353

    Article  Google Scholar 

  85. Lee YH, Matthews RD, Pavlostathis SG (2005) Anaerobic biodecolorization of textile reactive anthraquinone and phthalocyanine dyebaths under hypersaline conditions. Water Sci Technol 52:377–383

    CAS  Google Scholar 

  86. Lee YH, Matthews RD, Pavlostathis SG (2006) Biological decolorisation of reactice anthraquinone and phthalocyanine dyes under various oxidation–reduction conditions. Water Environ Res 78:156–169

    Article  CAS  Google Scholar 

  87. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011

    Article  CAS  Google Scholar 

  88. Lovley DR, Fraga JL, BluntHarris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch Hydrob 26:152–157

    Article  CAS  Google Scholar 

  89. Keck A, Rau J, Reemtsma T, Mattes R, Stolz A, Klein J (2002) Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6. Appl Environ Microbiol 68:4341–4349

    Article  CAS  Google Scholar 

  90. Dos Santos AB, Bisschops IAE, Cervantes FJ, Van Lier JB (2004) Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 ℃) and thermophilic (55℃) treatments for decolourisation of textile wastewaters. Chemosphere 55:1149–1157

    Article  Google Scholar 

  91. Walker R, Ryan AJ (1971) Some molecular parameters influencing rate of reductions of azo compounds by intestinal microflora. Xenobiotica 1:483–486

    Article  CAS  Google Scholar 

  92. Moir D, Masson S, Chu I (2001) Structure-activity relationship study on the bioreduction of azo dyes by Clostridium paraputrificum. Environ Toxicol Chem 20:479–484

    CAS  Google Scholar 

  93. Gottschalk G, Knackmuss HJ (1993) Bacteria and the biodegradation of chemicals: achieved naturally, by combination, or by construction. Angew Chem Int Ed 32:1398–1408

    Article  Google Scholar 

  94. Zimmermann T, Gasser F, Kulla HG, Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    Article  CAS  Google Scholar 

  95. Knackmus HJ (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol 51:287–295

    Article  Google Scholar 

  96. Chang JS, Kuo TS (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Biores Technol 75:107–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by University Grants Commission, Govt. of India; New Delhi through Maulana Azad National Fellowship (MANF) for Sabiyah Akhter is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqman Jameel Rather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, L.J., Akhter, S., Hassan, Q.P. (2018). Bioremediation: Green and Sustainable Technology for Textile Effluent Treatment. In: Muthu, S. (eds) Sustainable Innovations in Textile Chemistry and Dyes. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8600-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8600-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8599-4

  • Online ISBN: 978-981-10-8600-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics