Skip to main content

Harnessing Chemoselective Imine Ligation for Tethering Bioactive Molecules to Platinum(IV) Prodrugs

  • Chapter
  • First Online:
Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Platinum(II)-based drugs, namely cisplatin, carboplatin and oxaliplatin, are the first line of treatment for many types of malignancies, including testicular, ovarian and lung cancer (Kelland in Nat Rev Cancer 7:573–584, [1]; Abu-Surrah and Kettunen in Curr Med Chem 13:1337–1357, [2]). However, their efficacy is severely limited by adverse side-effects due to high toxicities and incidences of drug resistance, either inherent or acquired (Fuertes et al. in Chem Rev 103:645–662, [3]).

Reproduced with permission from the Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelland, L.: The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Abu-Surrah, A.S., Kettunen, M.: Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 13, 1337–1357 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Fuertes, M.A., Alonso, C., Pérez, J.M.: Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev. 103, 645–662 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Galanski, M., Keppler, B.K.: Searching for the magic bullet: anticancer platinum drugs which can be accumulated or activated in the tumor tissue. Anti-Cancer Agents Med. Chem. 7, 55–73 (2007)

    Article  CAS  Google Scholar 

  5. Sternberg, C.N., Whelan, P., Hetherington, J., Paluchowska, B., Slee, P.H.T.J., Vekemans, K., Van Erps, P., Theodore, C., Koriakine, O., Oliver, T., Lebwohl, D., Debois, M., Zurlo, A., Collette, L.: Phase III trial of satraplatin, an oral platinum plus prednisone vs. prednisone alone in patients with hormone-refractory prostate cancer. Oncology 68, 2–9 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Lemma, K., Sargeson, A.M., Elding, L.I.: Kinetics and mechanism for reduction of oral anticancer platinum(IV) dicarboxylate compounds by L-ascorbate ions. J. Chem. Soc. Dalton Trans. 7, 1167–1172 (2000)

    Article  Google Scholar 

  7. Hall, M.D., Hambley, T.W.: Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 232, 49–67 (2002)

    Article  CAS  Google Scholar 

  8. Barnes, K.R., Kutikov, A., Lippard, S.J.: Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol. 11, 557–564 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Giandomenico, C.M., Abrams, M.J., Murrer, B.A., Vollano, J.F., Rheinheimer, M.I., Wyer, S.B., Bossard, G.E., Higgins, J.D.: Carboxylation of kinetically inert platinum(IV) hydroxy complexes. An entree into orally active platinum(IV) antitumor agents. Inorg. Chem. 34, 1015–1021 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Galanski, M., Keppler, B.K.: Carboxylation of dihydroxoplatinum(IV) complexes via a new synthetic pathway. Inorg. Chem. 35, 1709–1711 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Galanski, M., Keppler, B.K.: Carboxylation of dihydroxoplatinum(IV) complexes with acyl chlorides. Crystal structures of the trans-R, R- and trans-S, S-isomer of (OC-6-33)-bis(1-adamantanecarboxylato)-(cyclohexane-1,2-diamine)dichloroplatinum(IV). Inorg. Chim. Acta 265, 271–274 (1997)

    Article  CAS  Google Scholar 

  12. Lee, E.J., Jun, M.-J., Lee, S.S., Sohn, Y.S.: Synthesis, structure, and properties of isopropylidenemalonatoplatinum(IV) complexes. Polyhedron 16, 2421–2428 (1997)

    Article  CAS  Google Scholar 

  13. Ali, M.S., Ali Khan, S.R., Ojima, H., Guzman, I.Y., Whitmire, K.H., Siddik, Z.H., Khokhar, A.R.: Model platinum nucleobase and nucleoside complexes and antitumor activity: X-ray crystal structure of [PtIV(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-ethylguanine)Cl]NO3 · H2O. J. Inorg. Biochem. 99, 795–804 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Hambley, T.W., Battle, A.R., Deacon, G.B., Lawrenz, E.T., Fallon, G.D., Gatehouse, B.M., Webster, L.K., Rainone, S.: Modifying the properties of platinum(IV) complexes in order to increase biological effectiveness. J. Inorg. Biochem. 77, 3–12 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Ang, W.H., Khalaila, I., Allardyce, C.S., Juillerat-Jeanneret, L., Dyson, P.J.: Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J. Am. Chem. Soc. 127, 1382–1383 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Reithofer, M.R., Valiahdi, S.M., Galanski, M., Jakupec, M.A., Arion, V.B., Keppler, B.K.: Novel endothall-containing platinum(IV) complexes: Synthesis, characterization, and cytotoxic activity. Chem. Biodivers. 5, 2160–2170 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Dhar, S., Lippard, S.J.: Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. U. S. A. 106, 22199–22204 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ang, W.H., Pilet, S., Scopelliti, R., Bussy, F., Juillerat-Jeanneret, L., Dyson, P.J.: Synthesis and characterization of platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: Influence of the ligands on drug efficacies and uptake. J. Med. Chem. 48, 8060–8069 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Perez, J.M., Camazón, M., Alvarez-Valdes, A., Quiroga, A.G., Kelland, L.R., Alonso, C., Navarro-Ranninger, M.C.: Synthesis, characterization and DNA modification induced by a novel Pt(IV)-bis(monoglutarate) complex which induces apoptosis in glioma cells. Chem.-Biol. Interact. 117, 99–115 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Reithofer, M., Galanski, M., Roller, A., Keppler, B.K.: An entry to novel platinum complexes: Carboxylation of dihydroxoplatinum(IV) complexes with succinic anhydride and subsequent derivatization. Eur. J. Inorg. Chem. 2006, 2612–2617 (2006)

    Article  CAS  Google Scholar 

  21. Reithofer, M.R., Valiahdi, S.M., Jakupec, M.A., Arion, V.B., Egger, A., Galanski, M., Keppler, B.K.: Novel di- and tetracarboxylatoplatinum(IV) complexes. Synthesis, characterization, cytotoxic activity, and DNA platination. J. Med. Chem. 50, 6692–6699 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Dhar, S., Daniel, W.L., Giljohann, D.A., Mirkin, C.A., Lippard, S.J.: Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J. Am. Chem. Soc. 131, 14652–14653 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhar, S., Liu, Z., Thomale, J., Dai, H., Lippard, S.J.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukhopadhyay, S., Barnes, C.M., Haskel, A., Short, S.M., Barnes, K.R., Lippard, S.J.: Conjugated platinum(IV) peptide complexes for targeting angiogenic tumor vasculature. Bioconjugate Chem. 19, 39–49 (2007)

    Article  CAS  Google Scholar 

  25. Feazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8439 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tiefenbrunn, T.K., Dawson, P.E.: Chemoselective ligation techniques: Modern applications of time-honored chemistry. J. Pept. Sci. 94, 95–106 (2010)

    Article  CAS  Google Scholar 

  27. Hermanson, G.T.: Bioconjugate Techniques, 2nd edn, p. 1202. Academic Press, New York (2008)

    Google Scholar 

  28. Dirksen, A., Dawson, P.E.: Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjugate Chem. 19, 2543–2548 (2008)

    Article  CAS  Google Scholar 

  29. Prescher, J.A., Bertozzi, C.R.: Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Lim, L.H.K., Pervaiz, S.: Annexin 1: the new face of an old molecule. FASEB J 21, 968–975 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. Silistino-Souza, R., Rodrigues-Lisoni, F.C., Cury, P.M., Maniglia, J.V., Raposo, L.S., Tajara, E.H., Christian, H.C., Oliani, S.M.: Annexin 1: Differential expression in tumor and mast cells in human larynx cancer. Int. J. Cancer 120, 2582–2589 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Dirksen, A., Hackeng, T.M., Dawson, P.E.: Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. 45, 7581–7584 (2006)

    Article  CAS  Google Scholar 

  33. O’Ferrall, R.A.M., O’Brien, D.: Rate and equilibrium constants for hydrolysis and isomerization of (E)- and (Z)-p-methoxybenzaldehyde oximes. J. Phys. Org. Chem. 17, 631–640 (2004)

    Article  CAS  Google Scholar 

  34. Lustig, E.: A nuclear magnetic resonance study of syn-anti isomerism in ketooximes. J. Phys. Chem. 65, 491–495 (1961)

    Article  CAS  Google Scholar 

  35. Blanden, A.R., Mukherjee, K., Dilek, O., Loew, M., Bane, S.L.: 4-aminophenylalanine as a biocompatible nucleophilic catalyst for hydrazone ligations at low temperature and neutral pH. Bioconjugate Chem. 22, 1954–1961 (2011)

    Article  CAS  Google Scholar 

  36. Masui, M., Ohmori, H.: Studies on Girard hydrazones. Part III. Further kinetic studies on the hydrolysis of Girard hydrazones. J. Chem. Soc. B 762–771 (1967)

    Google Scholar 

  37. Dirksen, A., Dirksen, S., Hackeng, T.M., Dawson, P.E.: Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Carr, J., Tingle, M., McKeage, M.: Rapid biotransformation of satraplatin by human red blood cells in vitro. Cancer Chemother. Pharmacol. 50, 9–15 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Carr, J., Tingle, M., McKeage, M.: Satraplatin activation by haemoglobin, cytochrome C and liver microsomes in vitro. Cancer Chemother. Pharmacol. 57, 483–490 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Gibson, D.: The mechanism of action of platinum anticancer agents-what do we really know about it? Dalton Trans. 48, 10681–10689 (2009)

    Article  CAS  Google Scholar 

  41. Aryal, S., Hu, C.-M.J., Zhang, L.: Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4, 251–258 (2009)

    Article  CAS  Google Scholar 

  42. Kalia, J., Raines, R.T.: Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47, 7523–7526 (2008)

    Article  CAS  Google Scholar 

  43. Kuroda, R., Ismail, I.M., Sadler, P.J.: X-ray and NMR studies of trans-dihydroxo-platinum(IV) antitumor complexes. J. Inorg. Biochem. 22, 103–117 (1984)

    Article  CAS  PubMed  Google Scholar 

  44. Dhara, S.C.: A rapid method for the synthesis of cis-[Pt(NH3)2Cl2]. Indian J. Chem. 8, 193–194 (1970)

    Google Scholar 

  45. Fulmer, G.R., Miller, A.J.M., Sherden, N.H., Gottlieb, H.E., Nudelman, A., Stoltz, B.M., Bercaw, J.E., Goldberg, K.I.: NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010)

    Article  CAS  Google Scholar 

  46. Sadowski, J., Gasteiger, J., Klebe, G.: Comparison of automatic three-dimensional model builders using 639 X-ray structures. J. Chem. Inf. Model. 34, 1000–1008 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Yuan Qiang Wong .

Supplementary Information

Supplementary Information

1H NMR spectra of Pt-tyrosine hydrazide 2c. The asymmetry of the aromatic protons observed in the 1H NMR spectra of 2c was initially puzzling as the protons Ha/H 1a , Hb/H 1b and Hd/H 1d exhibited greater magnetic inequivalence than was observed with the other Pt(IV)-imine conjugates where the same protons (though magnetically inequivalent) had closely overlapping chemical shifts. Consequently, in order to rule out the possibility of asymmetry of the axial ligands (eg. one side having E stereoisomerism with the other side being Z), we synthesized the purely organic hydrazone conjugate between 4-carboxylbenzaldehyde and tyrosine hydrazide for comparison. As shown in Fig. S2.6, the organic hydrazone displayed the same asymmetry of the aromatic protons. We postulated that this asymmetry arose due to slow rotation of the N=CH–Ph double bond in the NMR timescale, resulting in more distinctive magnetic inequivalence of Hb versus H 1b .

Fig. S2.1
figure 6

1H NMR spectra of platinum(IV)-benzaldehyde complex 1 in DMSO-d6

Fig. S2.2
figure 7

1H NMR spectra of complex 1 in acetone-d6 and ESI-MS characterization

Fig. S2.3
figure 8

RP-HPLC assessment of purity of Pt-benzaldehyde 1 dissolved in DMF/H2O. Elution conditions for both spectra (a) and (b): 20–80% gradient elution system with aq. NH4OAc buffer (10 mM, pH 5.5) (solvent A) and MeCN (solvent B) over 15 min at 1.0 mL/min. Columns used are: a Phenomenex Luna C18(2) (250 × 4.60 mm i.d), b Shimpack VP-ODS column (150 × 4.60 mm i.d)

Fig. S2.4
figure 9

Similarities between 1H NMR spectrum of: a Pt-tyrosine hydrazide (2c) and b the purely organic hydrazone ligation between 4-carboxylbenzaldehyde and tyrosine hydrazide. The 3D visual illustration is generated by CORINA [46]

Synthesis of hydrazone conjugate between 4-carboxylbenzaldehyde and l-tyrosine hydrazide as NMR reference. 4-carboxylbenzaldehyde (21.5 mg, 0.143 mmol) was added to a solution of l-tyrosine hydrazide (140 mg, 0.716 mmol) in 50% DMF/H2O (3 mL). The reaction mixture was lyophilized after 24 h and washed with H2O to yield a white precipitate. See Fig. S2.4 for 1H NMR spectra; Purity (HPLC): 92% at 254 nm.

Fig. S2.5
figure 10

Only slight hydrolysis of Pt-Girard’s reagent T 2e was observed at pH 7.4 and 37 °C over 24 h; the λmax of the spectra was at 303 nm, attributable to the hydrazone bond

Catalysis at physiological pH by p-anisidine. The reaction between Pt-benzaldehyde 1 (A) and benzhydrazide to form the mono-ligated Pt-benzhydrazide (B) and bis-ligated Pt-benzhydrazide 2a (C) product follows pseudo 1st order reaction kinetics in the presence of excess hydrazide and may be described by the following chemical equations.

The consumption of 1 and formation of the bis-conjugated product 2a at hourly intervals was quantified by integration at 254 and 280 nm. In order to obtain a smooth plot of [1] and [2a] as a function of time, the experimental data was curve-fitted to model the chemical equilibriums as shown in Fig. S2.6 and Table S2.1 using the chemical reactions module of Berkeley Madonna, a commercial graphical differential equation solver.

Fig. S2.6
figure 11

Illustration of imine ligation between Pt-benzaldehyde 1 (a) and benzhydrazide to yield the mono-ligated product (b) and the bis-ligated product 2a (c)

In order to account for differences in molar absorptivity, the fraction of Pt-benzaldehyde (A) at any one point in time (t) was calculated as the current amount of A over the initial amount of A as quantified by HPLC integration. Similarly, the fraction of bis-ligated product (C) at any one point in time was calculated as the current amount of C over the maximum amount of C produced at the end of the reaction. Since it was difficult to extrapolate the maximum amount of mono-ligated product (B) from the experimental data, the fraction of B at any one point in time was calculated by substracting from the fraction of A and C. This is summarized as the follows (Table S2.1):

Table S2.1 Representative summary of experimental data for curve fitting
$$\begin{aligned} {\text{Fraction of A}} & = {\text{Average of}}\frac{Absorbance\,of\,A\,at\,t}{Inital\,Absorbance\,of\,A\,at\,t = 0}{\text{at}}\,254\,{\text{and}}\,280\;{\text{nm}} \\ {\text{Fraction of C}} & = {\text{Average of}}\frac{\text{Absorbance of C at t}}{{{\text{Absorbance of C at t}} = \infty }}{\text{at}}\,254\,{\text{and}}\,280\;{\text{nm}} \\ {\text{Fraction of B}} & = 1{-}\left( {{\text{Fraction of A}} + {\text{Fraction of C}}} \right) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.Y.Q. (2018). Harnessing Chemoselective Imine Ligation for Tethering Bioactive Molecules to Platinum(IV) Prodrugs. In: Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8594-9_2

Download citation

Publish with us

Policies and ethics