Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 418 Accesses

Abstract

Cancer has been a leading cause of mortality both globally and locally, with increasing incidence rates as a consequence of an aging population, environmental factors and lifestyle choices (Teo and Soo in Jpn J Clin Oncol, 43:219–224, 2013 [1]). The life-time risk of cancer has been estimated to be over 1 in 3 persons (Sasieni and Shelton in Br J Cancer, 105:460–465, 2011 [2]). Worldwide, there are appx. 6 million cancer-related deaths annually, a figure which is expected to nearly treble to appx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo, M.C.C., Soo, K.C.: Cancer trends and incidences in Singapore. Jpn. J. Clin. Oncol. 43, 219–224 (2013)

    Article  PubMed  Google Scholar 

  2. Sasieni, P.D., Shelton, J., Ormiston-Smith, N., Thomson, C.S., Silcocks, P.B.: What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries. Br. J. Cancer 105, 460–465 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ramsey, S.D.: How should we value lives lost to cancer? J. Natl Cancer Inst. 100, 1742–1743 (2008)

    Article  PubMed  Google Scholar 

  4. DeVita, V.T., Rosenberg, S.A.: Two hundred years of cancer research. N. Engl. J. Med. 366, 2207–2214 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Agarwal, S., Pappas, L., Neumayer, L., Kokeny, K., Agarwal, J.: Effect of breast conservation therapy vs mastectomy on disease-specific survival for early-stage breast cancer. JAMA Surg. 149, 267–274 (2014)

    Article  PubMed  Google Scholar 

  6. Mehlen, P., Puisieux, A.: Metastasis: a question of life or death. Nat. Rev. Cancer 6, 449–458 (2006)

    Article  PubMed  CAS  Google Scholar 

  7. Couzin-Frankel, J.: Cancer Immunotherapy. Science 342, 1432–1433 (2013)

    Article  PubMed  CAS  Google Scholar 

  8. Hall, M.D., Mellor, H.R., Callaghan, R., Hambley, T.W.: Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem. 50, 3403–3411 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. Hall, M.D., Hambley, T.W.: Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 232, 49–67 (2002)

    Article  CAS  Google Scholar 

  10. Chin, C.F., Wong, D.Y.Q., Jothibasu, R., Ang, W.H.: Anticancer platinum(IV) prodrugs with novel modes of activity. Curr. Top. Med. Chem. 11, 2602–2612 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. Wheate, N.J., Walker, S., Craig, G.E., Oun, R.: The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. Galanski, M., Jakupec, M.A., Keppler, B.K.: Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem. 12, 2075–2094 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. Kelland, L.: The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Abu-Surrah, A.S., Kettunen, M.: Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 13, 1337–1357 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. Alderden, R.A., Hall, M.D., Hambley, T.W.: The discovery and development of cisplatin. J. Chem. Educ. 83, 728 (2006)

    Article  CAS  Google Scholar 

  16. Rosenberg, B.: Platinum complexes for the treatment of cancer. Interdiscip. Sci. Rev. 3, 134–147 (1978)

    Article  CAS  Google Scholar 

  17. Abu-Surrah, A.S., Kettunen, M.: Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 13, 1337–1357 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Weiss, R.B., Christian, M.C.: New cisplatin analogues in development: a review. Drugs 46, 360–377 (1993)

    Article  PubMed  CAS  Google Scholar 

  19. Montana, A.M., Batalla, C.: The rational design of anticancer platinum complexes: the importance of the structure-activity relationship. Curr. Med. Chem. 16, 2235–2260 (2009)

    Article  PubMed  CAS  Google Scholar 

  20. Todd, R.C., Lippard, S.J.: Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009)

    Article  PubMed  CAS  Google Scholar 

  21. Nitiss, J.L.: A copper connection to the uptake of platinum anticancer drugs. Proc. Natl. Acad. Sci. U. S. A. 99, 13963–13965 (2002)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Harrach, S., Ciarimboli, G.: Role of transporters in the distribution of platinum-based drugs. Front. Pharmacol. 6 (2015)

    Google Scholar 

  23. Zhang, S., Lovejoy, K.S., Shima, J.E., Lagpacan, L.L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J.W., Chen, X., Lippard, S.J., Giacomini, K.M.: Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66, 8847–8857 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Eastman, A.: The mechanism of action of cisplatin: from adducts to apoptosis. In: Bernhard, L. (ed.) Cisplatin, pp. 111–134 (2006)

    Chapter  Google Scholar 

  25. Jamieson, E.R., Lippard, S.J.: Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 99, 2467–2498 (1999)

    Article  PubMed  CAS  Google Scholar 

  26. Legendre, F., Chottard, J.-C.: Kinetics and selectivity of DNA-platination. In: Bernhard, L (ed.) Cisplatin, pp. 223–245 (2006)

    Chapter  Google Scholar 

  27. Pil, P., Lippard, S.: Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256, 234–237 (1992)

    Article  PubMed  CAS  Google Scholar 

  28. Zamble, D.B., Mu, D., Reardon, J.T., Sancar, A., Lippard, S.J.: Repair of cisplatin–DNA adducts by the mammalian excision nucleases. Biochemistry 35, 10004–10013 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. Fichtinger-Schepman, A.M.J., Van der Veer, J.L., Den Hartog, J.H.J., Lohman, P.H.M., Reedijk, J.: Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24, 707–713 (1985)

    Article  PubMed  CAS  Google Scholar 

  30. Jamieson, E.R., Lippard, S.J.: Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev. 99, 2467–2498 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. Eguchi, Y., Shimizu, S., Tsujimoto, Y.: Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 57, 1835–1840 (1997)

    PubMed  CAS  Google Scholar 

  32. Gonzalez, V.M., Fuertes, M.A., Alonso, C., Perez, J.M.: Is cisplatin-induced cell death always produced by apoptosis? Mol. Pharmacol. 59, 657–663 (2001)

    Article  PubMed  CAS  Google Scholar 

  33. Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. Peleg-Shulman, T., Gibson, D.: Cisplatin–protein adducts are efficiently removed by glutathione but not by 5-guanosine monophosphate. J. Am. Chem. Soc. 123, 3171–3172 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. Soti, C., Racz, A., Csermely, P.: A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. J. Biol. Chem. 277, 7066–7075 (2002)

    Article  PubMed  CAS  Google Scholar 

  36. Cullen, K., Yang, Z., Schumaker, L., Guo, Z.: Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J. Bioenerg. Biomembr. 39, 43–50 (2007)

    Article  PubMed  CAS  Google Scholar 

  37. Chapman, E.G., DeRose, V.J.: Enzymatic processing of platinated RNAs. J. Am. Chem. Soc. 132, 1946–1952 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gibson, D.: The mechanism of action of platinum anticancer agents—what do we really know about it? Dalton Trans. 10681–10689 (2009)

    Google Scholar 

  39. Sheikh-Hamad, D.: Cisplatin-induced cytoxicity: is the nucleus relevant? Am. J. Physiol. Renal Physiol. 295, F42–F43 (2008)

    Article  PubMed  CAS  Google Scholar 

  40. Yu, F., Megyesi, J., Price, P.M.: Cytoplasmic initiation of cisplatin cytotoxicity. Am. J. Physiol. Renal Physiol. 295, F44–F52 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang, X., Guo, Z.: Towards the rational design of platinum(ii) and gold(iii) complexes as antitumour agents. Dalton Trans. 1521–1532 (2008)

    Google Scholar 

  42. Jung, Y., Lippard, S.J.: Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 107, 1387–1407 (2007)

    Article  PubMed  CAS  Google Scholar 

  43. Galanski, M., Keppler, B.K.: Searching for the magic bullet: anticancer platinum drugs which can be accumulated or activated in the tumor tissue. Anticancer Agents Med. Chem. 7, 55–73 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. McWhinney, S.R., Goldberg, R.M., McLeod, H.L.: Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther. 8, 10–16 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pabla, N., Dong, Z.: Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73, 994–1007 (2008)

    Article  PubMed  CAS  Google Scholar 

  46. Ozkok, A., Edelstein, C.L.: Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014, 17 (2014)

    Article  CAS  Google Scholar 

  47. Screnci, D., McKeage, M.J.: Platinum neurotoxicity: clinical profiles, experimental models and neuroprotective approaches. J. Inorg. Biochem. 77, 105–110 (1999)

    Article  PubMed  CAS  Google Scholar 

  48. Siddik, Z.H.: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003)

    Article  PubMed  CAS  Google Scholar 

  49. Samimi, G., Varki, N.M., Wilczynski, S., Safaei, R., Alberts, D.S., Howell, S.B.: Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin. Cancer Res. 9, 5853–5859 (2003)

    PubMed  CAS  Google Scholar 

  50. Samimi, G., Safaei, R., Katano, K., Holzer, A.K., Rochdi, M., Tomioka, M., Goodman, M., Howell, S.B.: Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res. 10, 4661–4669 (2004)

    Article  PubMed  CAS  Google Scholar 

  51. Wang, X., Guo, Z.: The role of sulfur in platinum anticancer chemotherapy. Anti-Cancer Agents Med. Chem. 7, 19–34 (2007)

    Article  Google Scholar 

  52. Dolman, R.C., Deacon, G.B., Hambley, T.W.: Studies of the binding of a series of platinum(IV) complexes to plasma proteins. J. Inorg. Biochem. 88, 260–267 (2002)

    Article  PubMed  CAS  Google Scholar 

  53. Shah, M.A., Schwartz, G.K.: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res. 7, 2168–2181 (2001)

    PubMed  CAS  Google Scholar 

  54. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wilson, J.J., Lippard, S.J.: Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 114, 4470–4495 (2014)

    Article  PubMed  CAS  Google Scholar 

  56. Collins, I., Workman, P.: New approaches to molecular cancer therapeutics. Nat. Chem. Biol. 2, 689–700 (2006)

    Article  PubMed  CAS  Google Scholar 

  57. Izar, B., Rotow, J., Gainor, J., Clark, J., Chabner, B.: Pharmacokinetics, clinical indications, and resistance mechanisms in molecular targeted therapies in cancer. Pharmacol. Rev. 65, 1351–1395 (2013)

    Article  PubMed  CAS  Google Scholar 

  58. Iqbal, N., Iqbal, N.: Imatinib: a breakthrough of targeted therapy in cancer. Chemother. Res. Pract. 2014, 9 (2014)

    Google Scholar 

  59. Lebwohl, D., Canetta, R.: Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer 34, 1522–1534 (1998)

    Article  PubMed  CAS  Google Scholar 

  60. O’Dwyer, P.J., Stevenson, J.P., Johnson, S.W.: Clinical status of cisplatin, carboplatin, and other platinum-based antitumor drugs. In: Bernhard L (ed.) Cisplatin, pp. 29–69 (2006)

    Google Scholar 

  61. Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F., Wong, K.-K.: Non-small-cell lung cancers: a heterogeneous set of diseases. Nat. Rev. Cancer 14, 535–546 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl. J. Med. 366, 883–892 (2012)

    Article  PubMed  CAS  Google Scholar 

  63. Fuertes, M.A., Alonso, C., Perez, J.M.: Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev. 103, 645–662 (2003)

    Article  PubMed  CAS  Google Scholar 

  64. Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)

    Article  PubMed  CAS  Google Scholar 

  65. Lemma, K., Sargeson, A.M., Elding, L.I.: Kinetics and mechanism for reduction of oral anticancer platinum(IV) dicarboxylate compounds by l-ascorbate ions. J. Chem. Soc., Dalton Trans. 1167–1172 (2000)

    Google Scholar 

  66. Clarke, M.J., Sadler, P.J., Alessio, E.: Metallopharmaceuticals: DNA interactions. Springer, Berlin (1999)

    Google Scholar 

  67. Berners-Price, S.J., Ronconi, L., Sadler, P.J.: Insights into the mechanism of action of platinum anticancer drugs from multinuclear NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 49, 65–98 (2006)

    Article  CAS  Google Scholar 

  68. Nováková, O., Vrána, O., Kiseleva, V.I., Brabec, V.: DNA interactions of antitumor platinum(IV) complexes. Eur. J. Biochem. 228, 616–624 (1995)

    Article  PubMed  Google Scholar 

  69. Roat, R.M., Reedijk, J.: Reaction of mer-trichloro (diethylenetriamine)platmum(IV) chloride, (mer-[Pt(dien)Cl3]Cl), with purine nucleosides and nucleotides results in formation of platinum(II) as well as platinum(IV) complexes. J. Inorg. Biochem. 52, 263–274 (1993)

    Article  CAS  Google Scholar 

  70. Rotondo, E., Fimiani, V., Cavallaro, A., Ainis, T.: Does the antitumoral activity of platinum(IV) derivatives result from their in vivo reduction? Tumori 69, 31–36 (1983)

    Article  PubMed  CAS  Google Scholar 

  71. Tito, F., Nick, F., Waldo, O., Hideyuki, T., John, W., Timothy, G.M.: Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Crit. Rev. Oncol. Hematol. 53, 25–34 (2005)

    Article  Google Scholar 

  72. Aris, S.M., Farrell, N.P.: Towards antitumor active trans-platinum compounds. Eur. J. Inorg. Chem. 2009, 1293–1302 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Giandomenico, C.M., Abrams, M.J., Murrer, B.A., Vollano, J.F., Rheinheimer, M.I., Wyer, S.B., Bossard, G.E., Higgins, J.D.: Carboxylation of kinetically inert platinum(IV) hydroxy complexes. An entree into orally active platinum(IV) antitumor agents. Inorg. Chem. 34, 1015–1021 (1995)

    Article  PubMed  CAS  Google Scholar 

  74. Galanski, M., Keppler, B.K.: Carboxylation of dihydroxoplatinum(IV) complexes via a new synthetic pathway. Inorg. Chem. 35, 1709–1711 (1996)

    Article  PubMed  CAS  Google Scholar 

  75. Galanski, M., Keppler, B.K.: Carboxylation of dihydroxoplatinum(IV) complexes with acyl chlorides. Crystal structures of the trans-R, R- and trans-S, S-isomer of (OC-6-33)-bis(1-adamantanecarboxylato)-(cyclohexane-1,2-diamine)dichloroplatinum(IV). Inorg. Chim. Acta 265, 271–274 (1997)

    Article  CAS  Google Scholar 

  76. Lee, E.J., Jun, M.-J., Lee, S.S., Sohn, Y.S.: Synthesis, structure, and properties of isopropylidenemalonatoplatinum(IV) complexes. Polyhedron 16, 2421–2428 (1997)

    Article  CAS  Google Scholar 

  77. Ali, M.S., Ali Khan, S.R., Ojima, H., Guzman, I.Y., Whitmire, K.H., Siddik, Z.H., Khokhar, A.R.: Model platinum nucleobase and nucleoside complexes and antitumor activity: X-ray crystal structure of [PtIV(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-ethylguanine)Cl]NO3·H2O. J. Inorg. Biochem. 99, 795–804 (2005)

    Article  PubMed  CAS  Google Scholar 

  78. Hambley, T.W., Battle, A.R., Deacon, G.B., Lawrenz, E.T., Fallon, G.D., Gatehouse, B.M., Webster, L.K., Rainone, S.: Modifying the properties of platinum(IV) complexes in order to increase biological effectiveness. J. Inorg. Biochem. 77, 3–12 (1999)

    Article  PubMed  CAS  Google Scholar 

  79. Zhang, J.Z., Bonnitcha, P., Wexselblatt, E., Klein, A.V., Najajreh, Y., Gibson, D., Hambley, T.W.: Facile preparation of mono-, di- and mixed-carboxylato platinum(IV) complexes for versatile anticancer prodrug design. Chem. Eur. J. 19, 1672–1676 (2013)

    Article  PubMed  CAS  Google Scholar 

  80. Lee, Y.-A., Jung, O.-S.: Synthesis and characterization of stable bis(methoxo)platinum(IV) complexes. A facile synthesis via fluorenylidene-philic interactions. Bull. Chem. Soc. Jpn 75, 1533–1537 (2002)

    Article  CAS  Google Scholar 

  81. Lee, Y.-A., Ho Yoo, K., Jung, O.-S.: Oxidation of Pt(II) to Pt(IV) complex with hydrogen peroxide in glycols. Inorg. Chem. Commun. 6, 249–251 (2003)

    Article  CAS  Google Scholar 

  82. Feazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8439 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kauffman, G.B., Slusarczuk, G., Kirschner, S.: cis and trans-Tetrachlorodiammineplatinum(IV). In: Jacob, K. (ed.) Inorganic synthesis, pp. 236–238 (2007)

    Google Scholar 

  84. Ellis, L., Er, H., Hambley, T.: The influence of the axial ligands of a series of platinum(IV) anti-cancer complexes on their reduction to platinum(II) and reaction with DNA. Aust. J. Chem. 48, 793–806 (1995)

    Article  CAS  Google Scholar 

  85. Kizu, R., Nakanishi, T., Hayakawa, K., Matsuzawa, A., Eriguchi, M., Takeda, Y., Akiyama, N., Tashiro, T., Kidani, Y.: A new orally active antitumor 1R,2R-cyclohexanediamine-platinum(IV) complex: trans-(n-valerato)chloro(1R,2R-cyclohexanediamine) (oxalato)platinum(IV). Cancer Chemother. Pharmacol. 43, 97–105 (1999)

    Article  PubMed  CAS  Google Scholar 

  86. Barnes, K.R., Kutikov, A., Lippard, S.J.: Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol. 11, 557–564 (2004)

    Article  PubMed  CAS  Google Scholar 

  87. Ang, W.H., Pilet, S., Scopelliti, R., Bussy, F., Juillerat-Jeanneret, L., Dyson, P.J.: Synthesis and characterization of platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: influence of the ligands on drug efficacies and uptake. J. Med. Chem. 48, 8060–8069 (2005)

    Article  PubMed  CAS  Google Scholar 

  88. Perez, J.M., Camazón, M., Alvarez-Valdes, A., Quiroga, A.G., Kelland, L.R., Alonso, C., Navarro-Ranninger, M.C.: Synthesis, characterization and DNA modification induced by a novel Pt(IV)-bis(monoglutarate) complex which induces apoptosis in glioma cells. Chem-Biol. Interact. 117, 99–115 (1999)

    Article  PubMed  CAS  Google Scholar 

  89. Reithofer, M., Galanski, M., Roller, A., Keppler, B.K.: An entry to novel platinum complexes: carboxylation of dihydroxoplatinum(IV) complexes with succinic anhydride and subsequent derivatization. Eur. J. Inorg. Chem. 2006, 2612–2617 (2006)

    Article  CAS  Google Scholar 

  90. Reithofer, M.R., Valiahdi, S.M., Jakupec, M.A., Arion, V.B., Egger, A., Galanski, M., Keppler, B.K.: Novel di- and tetracarboxylatoplatinum(IV) complexes. Synthesis, characterization, cytotoxic activity, and DNA platination. J. Med. Chem. 50, 6692–6699 (2007)

    Article  PubMed  CAS  Google Scholar 

  91. Chin, C.F., Tian, Q., Setyawati, M.I., Fang, W., Tan, E.S.Q., Leong, D.T., Ang, W.H.: Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation. J. Med. Chem. 55, 7571–7582 (2012)

    Article  PubMed  CAS  Google Scholar 

  92. Wong, D.Y.Q., Lim, J.H., Ang, W.H.: Induction of targeted necrosis with HER2-targeted platinum(IV) anticancer prodrugs. Chem. Sci. 6, 3051–3056 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wong, D.Y.Q., Yeo, C.H.F., Ang, W.H.: Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew. Chem. Int. Ed. 53, 6752–6756 (2014)

    Article  CAS  Google Scholar 

  94. Song, R., Kim, K.M., Sohn, Y.S.: Synthesis and characterization of novel tricarboxylatoplatinum(IV) complexes. Nucleophilic substitution of (diamine)-tetrahydroxoplatinum(IV) with carboxylic acid. Inorg. Chim. Acta 338, 89–93 (2002)

    Article  CAS  Google Scholar 

  95. Ang, W.H., Khalaila, I., Allardyce, C.S., Juillerat-Jeanneret, L., Dyson, P.J.: Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J. Am. Chem. Soc. 127, 1382–1383 (2005)

    Article  PubMed  CAS  Google Scholar 

  96. Dhar, S., Lippard, S.J.: Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. U. S. A. 106, 22199–22204 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  97. Carr, J., Tingle, M., McKeage, M.: Rapid biotransformation of satraplatin by human red blood cells in vitro. Cancer Chemother. Pharmacol. 50, 9–15 (2002)

    Article  PubMed  CAS  Google Scholar 

  98. Mukhopadhyay, S., Barnes, C.M., Haskel, A., Short, S.M., Barnes, K.R., Lippard, S.J.: Conjugated platinum(IV) peptide complexes for targeting angiogenic tumor vasculature. Bioconjugate Chem. 19, 39–49 (2007)

    Article  CAS  Google Scholar 

  99. Bednarski, P.J., Grünert, R., Zielzki, M., Wellner, A., Mackay, F.S., Sadler, P.J.: Light-activated destruction of cancer cell nuclei by platinum diazide complexes. Chem. Biol. 13, 61–67 (2006)

    Article  PubMed  CAS  Google Scholar 

  100. Mackay, F.S., Woods, J.A., Moseley, H., Ferguson, J., Dawson, A., Parsons, S., Sadler, P.J.: A photoactivated trans-diammine platinum complex as cytotoxic as cisplatin. Chem. Eur. J. 12, 3155–3161 (2006)

    Article  PubMed  CAS  Google Scholar 

  101. Mackay, F.S., Moggach, S.A., Collins, A., Parsons, S., Sadler, P.J.: Photoactive trans ammine/amine diazido platinum(IV) complexes. Inorg. Chim. Acta 362, 811–819 (2009)

    Article  CAS  Google Scholar 

  102. Hall, M.D., Foran, G.J., Zhang, M., Beale, P.J., Hambley, T.W.: XANES determination of the platinum oxidation state distribution in cancer cells treated with platinum(IV) anticancer agents. J. Am. Chem. Soc. 125, 7524–7525 (2003)

    Article  PubMed  CAS  Google Scholar 

  103. Hall, M., Dillon, C., Zhang, M., Beale, P., Cai, Z., Lai, B., Stampfl, A.J., Hambley, T.: The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J. Biol. Inorg. Chem. 8, 726–732 (2003)

    Article  PubMed  CAS  Google Scholar 

  104. Hall, M.D., Alderden, R.A., Zhang, M., Beale, P.J., Cai, Z., Lai, B., Stampfl, A.P.J., Hambley, T.W.: The fate of platinum(II) and platinum(IV) anti-cancer agents in cancer cells and tumours. J. Struct. Biol. 155, 38–44 (2006)

    Article  PubMed  CAS  Google Scholar 

  105. New, E.J., Duan, R., Zhang, J.Z., Hambley, T.W.: Investigations using fluorescent ligands to monitor platinum(IV) reduction and platinum(II) reactions in cancer cells. Dalton Trans. 3092–3101 (2009)

    Google Scholar 

  106. Chaney, S.G., Wyrick, S., Till, G.K.: In vitro biotransformations of tetrachloro(d, l-trans)-1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in rat plasma. Cancer Res. 50, 4539–4545 (1990)

    PubMed  CAS  Google Scholar 

  107. Carr, J., Tingle, M., McKeage, M.: Satraplatin activation by haemoglobin, cytochrome C and liver microsomes in vitro. Cancer Chemother. Pharmacol. 57, 483–490 (2006)

    Article  PubMed  CAS  Google Scholar 

  108. Galanski, M., Jakupec, M.A., Keppler, B.K.: Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem. 12, 2075–2094 (2005)

    Article  PubMed  CAS  Google Scholar 

  109. Choi, S., Filotto, C., Bisanzo, M., Delaney, S., Lagasee, D., Whitworth, J.L., Jusko, A., Li, C., Wood, N.A., Willingham, J., Schwenker, A., Spaulding, K.: Reduction and anticancer activity of platinum(IV) complexes. Inorg. Chem. 37, 2500–2504 (1998)

    Article  CAS  Google Scholar 

  110. Kwon, Y.-E., Whang, K.-J., Park, Y.-J., Kim, K.H.: Synthesis, characterization and antitumor activity of novel octahedral Pt(IV) complexes. Bioorg. Med. Chem. 11, 1669–1676 (2003)

    Article  PubMed  CAS  Google Scholar 

  111. Dhar, S., Gu, F.X., Langer, R., Farokhzad, O.C., Lippard, S.J.: Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lake, R.A., Robinson, B.W.S.: Immunotherapy and chemotherapy—a practical partnership. Nat. Rev. Cancer 5, 397–405 (2005)

    Article  PubMed  CAS  Google Scholar 

  113. Galluzzi, L., Senovilla, L., Zitvogel, L., Kroemer, G.: The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012)

    Article  PubMed  CAS  Google Scholar 

  114. Zitvogel, L., Galluzzi, L., Smyth, M.J., Kroemer, G.: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Zitvogel, L., Apetoh, L., Ghiringhelli, F., Kroemer, G.: Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008)

    Article  PubMed  CAS  Google Scholar 

  116. Lesterhuis, W.J., Haanen, J.B.A.G., Punt, C.J.A.: Cancer immunotherapy—revisited. Nat. Rev. Drug Discov. 10, 591–600 (2011)

    Article  PubMed  CAS  Google Scholar 

  117. Krysko, D.V., Garg, A.D., Kaczmarek, A., Krysko, O., Agostinis, P., Vandenabeele, P.: Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012)

    Article  PubMed  CAS  Google Scholar 

  118. Mattarollo, S.R., Loi, S., Duret, H., Ma, Y., Zitvogel, L., Smyth, M.J.: Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71, 4809–4820 (2011)

    Article  PubMed  CAS  Google Scholar 

  119. Halama, N., Michel, S., Kloor, M., Zoernig, I., Benner, A., Spille, A., Pommerencke, T., von Knebel, D.M., Folprecht, G., Luber, B., Feyen, N., Martens, U.M., Beckhove, P., Gnjatic, S., Schirmacher, P., Herpel, E., Weitz, J., Grabe, N., Jaeger, D.: Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71, 5670–5677 (2011)

    Article  PubMed  CAS  Google Scholar 

  120. Dieci, M.V., Criscitiello, C., Goubar, A., Viale, G., Conte, P., Guarneri, V., Ficarra, G., Mathieu, M.C., Delaloge, S., Curigliano, G., Andre, F.: Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol. 25, 611–618 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. de Biasi, A.R., Villena-Vargas, J., Adusumilli, P.S.: Cisplatin-Induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin. Cancer Res. 20, 5384–5391 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)

    Article  PubMed  CAS  Google Scholar 

  123. Reed, E.: Cisplatin, carboplatin, and oxaliplatin. In: Chabner, B.A., Longo, D.L. (eds.) Cancer chemotherapy and biotherapy: principles and practice, 5th edn, pp. 333–341. Lippincott Williams & Wilkins, Philadelphia (2011)

    Google Scholar 

  124. Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., Aymeric, L., Michaud, M., Apetoh, L., Barault, L., Mendiboure, J., Pignon, J.P., Jooste, V., van Endert, P., Ducreux, M., Zitvogel, L., Piard, F., Kroemer, G.: Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2009)

    Article  PubMed  CAS  Google Scholar 

  125. Merritt, R.E., Mahtabifard, A., Yamada, R.E., Crystal, R.G., Korst, R.J.: Cisplatin augments cytotoxic T-lymphocyte–mediated antitumor immunity in poorly immunogenic murine lung cancer. J. Thorac. Cardiovasc. Surg. 126, 1609–1617 (2003)

    Article  PubMed  CAS  Google Scholar 

  126. Ramakrishnan, R., Assudani, D., Nagaraj, S., Hunter, T., Cho, H.-I., Antonia, S., Altiok, S., Celis, E., Gabrilovich, D.I.: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lesterhuis, W.J., Punt, C.J.A., Hato, S.V., Eleveld-Trancikova, D., Jansen, B.J.H., Nierkens, S., Schreibelt, G., de Boer, A., Van Herpen, C.M.L., Kaanders, J.H., van Krieken, J.H.J.M., Adema, G.J., Figdor, C.G., de Vries, I.J.M.: Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest. 121, 3100–3108 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kleinerman, E.S., Zwelling, L.A., Muchmore, A.V.: Enhancement of naturally occurring human spontaneous monocyte-mediated cytotoxicity by cis-diamminedichloroplatinum(II). Cancer Res. 40, 3099–3102 (1980)

    PubMed  CAS  Google Scholar 

  129. Kleinerman, E., Howser, D., Young, R., Bull, J., Zwelling, L., Barlock, A., Decker, J., Muchmore, A.: Defective monocyte killing in patients with malignancies and restoration of function during chemotherapy. Lancet 316, 1102–1105 (1980)

    Article  Google Scholar 

  130. Lichtenstein, A.K., Pende, D.: Enhancement of natural killer cytotoxicity by cis-diamminedichloroplatinum(II) in vivo and in vitro. Cancer Res. 46, 639–644 (1986)

    PubMed  CAS  Google Scholar 

  131. Son, K., Kim, Y.-M.: In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing. Cancer Res. 55, 5524–5527 (1995)

    PubMed  CAS  Google Scholar 

  132. Okamoto, M., Kasetani, H., Kaji, R., Goda, H., Ohe, G., Yoshida, H., Sato, M. and Kasatani, H.: cis-Diamminedichloroplatinum and 5-fluorouracil are potent inducers of the cytokines and natural killer cell activity in vivo and in vitro. Cancer Immunol. Immunother. 47, 233–241 (1998).

    Article  PubMed  CAS  Google Scholar 

  133. Singh, R.A.K., Sodhi, A.: Antigen presentation by cisplatin-activated macrophages: role of soluble factor(s) and second messengers. Immunol. Cell Biol. 76, 513–519 (1998)

    Article  PubMed  CAS  Google Scholar 

  134. Hu, J., Kinn, J., Zirakzadeh, A.A., Sherif, A., Norstedt, G., Wikström, A.C., Winqvist, O.: The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation. Clin. Exp. Immunol. 172, 490–499 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Chang, C.-L., Hsu, Y.-T., Wu, C.-C., Lai, Y.-Z., Wang, C., Yang, Y.-C., Wu, T.-C., Hung, C.-F.: Dose-dense chemotherapy improves mechanisms of antitumor immune response. Cancer Res. 73, 119–127 (2013)

    Article  PubMed  CAS  Google Scholar 

  136. Taniguchi, K., Nishiura, H., Yamamoto, T.: Requirement of the acquired immune system in successful cancer chemotherapy with cis-diamminedichloroplatinum (II) in a syngeneic mouse tumor transplantation model. J. Immunother. 34, 480–489 (2011)

    Article  PubMed  CAS  Google Scholar 

  137. Dunn, G.P., Old, L.J., Schreiber, R.D.: The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148

    Article  PubMed  CAS  Google Scholar 

  138. Allavena, P., Mantovani, A.: Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol. 167, 195–205 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., Huhn, R.D., Song, W., Li, D., Sharp, L.L., Torigian, D.A., O’Dwyer, P.J., Vonderheide, R.H.: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sodhi, A., Chauhan, P.: Interaction between cisplatin treated murine peritoneal macrophages and L929 cells: involvement of adhesion molecules, cytoskeletons, upregulation of Ca2+ and nitric oxide dependent cytotoxicity. Mol. Immunol. 44, 2265–2276 (2007)

    Article  PubMed  CAS  Google Scholar 

  141. Li, Y., Wang, Z., Ma, X., Shao, B., Gao, X., Zhang, B., Xu, G., Wei, Y.: Low-dose cisplatin administration to septic mice improves bacterial clearance and programs peritoneal macrophage polarization to M1 phenotype. Pathog. Dis. 72, 111–123 (2014)

    Article  PubMed  CAS  Google Scholar 

  142. Kroemer, G., Galluzzi, L., Kepp, O., Zitvogel, L.: Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013)

    Article  PubMed  CAS  Google Scholar 

  143. Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G.M., Apetoh, L., Perfettini, J.L., Castedo, M., Mignot, G., Panaretakis, T., Casares, N., Metivier, D., Larochette, N., van Endert, P., Ciccosanti, F., Piacentini, M., Zitvogel, L., Kroemer, G.: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007)

    Article  PubMed  CAS  Google Scholar 

  144. Menger, L., Vacchelli, E., Adjemian, S., Martins, I., Ma, Y., Shen, S., Yamazaki, T., Sukkurwala, A.Q., Michaud, M., Mignot, G., Schlemmer, F., Sulpice, E., Locher, C., Gidrol, X., Ghiringhelli, F., Modjtahedi, N., Galluzzi, L., André, F., Zitvogel, L., Kepp, O., Kroemer, G.: Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 4, 143ra99 (2012)

    Article  PubMed  CAS  Google Scholar 

  145. Sukkurwala, A.Q., Adjemian, S., Senovilla, L., Michaud, M., Spaggiari, S., Vacchelli, E., Baracco, E.E., Galluzzi, L., Zitvogel, L., Kepp, O., Kroemer, G.: Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. OncoImmunology 3, e28473 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kepp, O., Menger, L., Vacchelli, E., Locher, C., Adjemian, S., Yamazaki, T., Martins, I., Sukkurwala, A.Q., Michaud, M., Senovilla, L., Galluzzi, L., Kroemer, G., Zitvogel, L.: Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 24, 311–318 (2013)

    Article  PubMed  CAS  Google Scholar 

  147. Chao, M.P., Jaiswal, S., Weissman-Tsukamoto, R., Alizadeh, A.A., Gentles, A.J., Volkmer, J., Weiskopf, K., Willingham, S.B., Raveh, T., Park, C.Y., Majeti, R., Weissman, I.L.: Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Yuan Qiang Wong .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.Y.Q. (2018). Introduction. In: Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8594-9_1

Download citation

Publish with us

Policies and ethics