Fast Fingerprint Retrieval Using Minutiae Neighbor Structure

  • Ilaiah Kavati
  • G. Kiran Kumar
  • Koppula Srinivas Rao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 705)

Abstract

This paper proposes a novel fingerprint identification system using minutiae neighborhood structure. First, we construct the nearest neighborhood for each minutia in the fingerprint. In the next step, we extract the features such as rotation invariant distances and orientation differences from the neighborhood structure. Then, we use these features to compute the index keys for each fingerprint. During identification of a query, a nearest neighbor algorithm is used to retrieve the best matches. Further, this approach enrolls the new fingerprints dynamically. This approach has been experimented on different benchmark Fingerprint Verification Competition (FVC) databases and the results are promising.

Keywords

Minutiae Quadruplet Nearest neighbors Indexing Identification Retrieval 

References

  1. 1.
    Cappelli, R., Lumini, A., Maio, D., Maltoni, D.: Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 402–421 (1999)CrossRefGoogle Scholar
  2. 2.
    Iloanusi, O., Gyaourova, A., Ross, A.: Indexing fingerprints using minutiae quadruplets. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 127–133. IEEE (2011)Google Scholar
  3. 3.
    Iloanusi, O.N.: Fusion of finger types for fingerprint indexing using minutiae quadruplets. Pattern Recognit. Lett. 38, 8–14 (2014)CrossRefGoogle Scholar
  4. 4.
    Jain, A.K., Ross, A.A., Nandakumar, K.: Fingerprint recognition. Introd. Biom. 51–96 (2011)Google Scholar
  5. 5.
    Jayaraman, U., Gupta, A.K., Gupta, P.: An efficient minutiae based geometric hashing for fingerprint database. Neurocomputing 137, 115–126 (2014)CrossRefGoogle Scholar
  6. 6.
    Kavati, I., Chenna, V., Prasad, M.V.N.K., Bhagvati, C.: Classification of extended delaunay triangulation for fingerprint indexing. In: 8th Asia Modelling Symposium (AMS), pp. 153–158. IEEE (2014)Google Scholar
  7. 7.
    Kavati, I., Prasad, M.V., Bhagvati, C.: Search space reduction in biometric databases: a review. In: Developing Next-Generation Countermeasures for Homeland Security Threat Prevention p. 236 (2016)Google Scholar
  8. 8.
    Kavati, I., Prasad, M.V., Bhagvati, C.: A clustering-based indexing approach for biometric databases using decision-level fusion. Int. J. Biom. 9(1), 17–43 (2017)CrossRefGoogle Scholar
  9. 9.
    Kavati, I., Prasad, M.V., Bhagvati, C.: Efficient Biometric Indexing and Retrieval Techniques for Large-Scale Systems. Springer (2017)CrossRefGoogle Scholar
  10. 10.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer Science & Business Media (2009)CrossRefGoogle Scholar
  11. 11.
    Mansukhani, P., Tulyakov, S., Govindaraju, V.: A framework for efficient fingerprint identification using a minutiae tree. IEEE Syst. J. 4(2), 126–137 (2010)CrossRefGoogle Scholar
  12. 12.
    Mehrotra, H., Majhi, B.: An efficient indexing scheme for iris biometric using kdb trees. In: International Conference on Intelligent Computing, pp. 475–484. Springer (2013)CrossRefGoogle Scholar
  13. 13.
    Singh, O.P., Dey, S., Samanta, D.: Fingerprint indexing using minutiae-based invariable set of multidimensional features. Int. J. Biom. 6(3), 272–303 (2014)CrossRefGoogle Scholar
  14. 14.
    Wayman, J., Jain, A., Maltoni, D., Maio, D.: An introduction to biometric authentication systems. Biom. Syst. 1–20 (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ilaiah Kavati
    • 1
  • G. Kiran Kumar
    • 2
  • Koppula Srinivas Rao
    • 2
  1. 1.Department of CSEAnurag Group of InstitutionsHyderabadIndia
  2. 2.Department of CSEMLR Institute of TechnologyHyderabadIndia

Personalised recommendations