Skip to main content

Retinal and Choroidal Vascular Diseases

  • Chapter
  • First Online:
Vitreoretinal Disorders

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 588 Accesses

Abstract

The diagnosis and monitoring of retinal and choroidal vascular diseases has evolved significantly over the last two decades with the advent of new imaging techniques such as enhanced depth optical coherence tomography, ultrawide field imaging and angiography, optical coherence tomography angiography, and more. Advances in therapeutics and scientific elucidation of retinal and choroidal vascular disease pathophysiology have further moved the field forward. This chapter covers past, present, and new practices and developments in retinal and choroidal vascular diseases beyond diabetic eye disease, including retinal artery and vein occlusions, ocular ischemic syndrome, sickle cell retinopathy, paracentral acute middle maculopathy, retinal macroaneurysms, macular telangiectasia, thin choroid, and pachychoroid spectrum diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  PubMed  CAS  Google Scholar 

  2. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 2015;49:67–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Patel PS, Sadda SR. Retinal artery occlusions. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  6. Hayreh SS. Acute retinal arterial occlusive disorders. Prog Retin Eye Res. 2011;30(5):359–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leavitt JA, Larson TA, Hodge DO, Gullerud RE. The incidence of central retinal artery occlusion in Olmsted County, Minnesota. Am J Ophthalmol. 2011;152(5):820–3. e2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park SJ, Choi NK, Seo KH, Park KH, Woo SJ. Nationwide incidence of clinically diagnosed central retinal artery occlusion in Korea, 2008 to 2011. Ophthalmology. 2014;121(10):1933–8.

    Article  PubMed  Google Scholar 

  9. Rumelt S, Dorenboim Y, Rehany U. Aggressive systematic treatment for central retinal artery occlusion. Am J Ophthalmol. 1999;128(6):733–8.

    Article  PubMed  CAS  Google Scholar 

  10. Biousse V, Calvetti O, Bruce BB, Newman NJ. Thrombolysis for central retinal artery occlusion. J Neuroophthalmol. 2007;27(3):215–30.

    Article  PubMed  Google Scholar 

  11. Hayreh SS, Podhajsky PA, Zimmerman MB. Retinal artery occlusion: associated systemic and ophthalmic abnormalities. Ophthalmology. 2009;116(10):1928–36.

    Article  PubMed  Google Scholar 

  12. Hayreh SS, Zimmerman MB. Central retinal artery occlusion: visual outcome. Am J Ophthalmol. 2005;140(3):376–91.

    Article  PubMed  Google Scholar 

  13. Hayreh SS, Podhajsky PA, Zimmerman MB. Branch retinal artery occlusion: natural history of visual outcome. Ophthalmology. 2009;116(6):1188–94. e4.

    Article  PubMed  Google Scholar 

  14. Hayreh SS, Weingeist TA. Experimental occlusion of the central artery of the retina. I. Ophthalmoscopic and fluorescein fundus angiographic studies. Br J Ophthalmol. 1980;64(12):896–912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. David NJ, Norton EW, Gass JD, Beauchamp J. Fluorescein angiography in central retinal artery occlusion. Arch Ophthalmol. 1967;77(5):619–29.

    Article  PubMed  CAS  Google Scholar 

  16. Henkes HE. Electroretinography in circulatory disturbances of the retina. II. The electroretinogram in cases of occlusion of the central retinal artery or of its branches. AMA. Arch Ophthalmol. 1954;51(1):42–53.

    Article  CAS  Google Scholar 

  17. Chen SN, Hwang JF, Chen YT. Macular thickness measurements in central retinal artery occlusion by optical coherence tomography. Retina. 2011;31(4):730–7.

    Article  PubMed  Google Scholar 

  18. Yu S, Pang CE, Gong Y, Freund KB, Yannuzzi LA, Rahimy E, et al. The spectrum of superficial and deep capillary ischemia in retinal artery occlusion. Am J Ophthalmol. 2015;159(1):53–63. e1–2.

    Article  PubMed  Google Scholar 

  19. Fraser SG, Adams W. Interventions for acute non-arteritic central retinal artery occlusion. Cochrane Database Syst Rev. 2009;1:Cd001989.

    Google Scholar 

  20. Dattilo M, Biousse V, Newman NJ. Update on the management of central retinal artery occlusion. Neurol Clin. 2017;35(1):83–100.

    Article  PubMed  Google Scholar 

  21. Schumacher M, Schmidt D, Jurklies B, Gall C, Wanke I, Schmoor C, et al. Central retinal artery occlusion: local intra-arterial fibrinolysis versus conservative treatment, a multicenter randomized trial. Ophthalmology. 2010;117(7):1367–75.e1.

    Article  PubMed  Google Scholar 

  22. Rim TH, Han J, Choi YS, Hwang SS, Lee CS, Lee SC, et al. Retinal artery occlusion and the risk of stroke development: twelve-year Nationwide cohort study. Stroke. 2016;47(2):376–82.

    Article  PubMed  Google Scholar 

  23. Callizo J, Feltgen N, Pantenburg S, Wolf A, Neubauer AS, Jurklies B, et al. Cardiovascular risk factors in central retinal artery occlusion: results of a prospective and standardized medical examination. Ophthalmology. 2015;122(9):1881–8.

    Article  PubMed  Google Scholar 

  24. Klein R, Klein BE, Jensen SC, Moss SE, Meuer SM. Retinal emboli and stroke: the beaver dam eye study. Arch Ophthalmol. 1999;117(8):1063–8.

    Article  PubMed  CAS  Google Scholar 

  25. Wong TY, Larsen EK, Klein R, Mitchell P, Couper DJ, Klein BE, et al. Cardiovascular risk factors for retinal vein occlusion and arteriolar emboli: the atherosclerosis risk in Communities & Cardiovascular Health studies. Ophthalmology. 2005;112(4):540–7.

    Article  PubMed  Google Scholar 

  26. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–89.

    Article  PubMed  Google Scholar 

  27. Abel AS, Suresh S, Hussein HM, Carpenter AF, Montezuma SR, Lee MS. Practice patterns after acute embolic retinal artery occlusion. Asia-Pacific J Ophthalmol. 2017;6(1):37–9.

    Article  Google Scholar 

  28. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Branch Vein Occlusion Study Group. Arch Ophthalmol. 1986;104(1):34–41.

    Article  Google Scholar 

  29. Hayreh SS, Zimmerman MB, Podhajsky P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol. 1994;117(4):429–41.

    Article  PubMed  CAS  Google Scholar 

  30. Baseline and early natural history report. The Central Vein Occlusion Study. Arch Ophthalmol. 1993;111(8):1087–95.

    Article  Google Scholar 

  31. Risk factors for central retinal vein occlusion. The eye disease case-control study group. Arch Ophthalmol. 1996;114(5):545–54.

    Article  Google Scholar 

  32. Rim TH, Kim DW, Han JS, Chung EJ. Retinal vein occlusion and the risk of stroke development: a 9-year nationwide population-based study. Ophthalmology. 2015;122(6):1187–94.

    Article  PubMed  Google Scholar 

  33. Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117(6):1094–101. e5.

    Article  PubMed  Google Scholar 

  34. Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase. Graefes Arch Clin Exp Ophthalmol. 1990;228(3):201–17.

    Article  PubMed  CAS  Google Scholar 

  35. Evaluation of grid pattern photocoagulation for macular edema in central vein occlusion. The Central Vein Occlusion Study Group M report. Ophthalmology. 1995;102(10):1425–33.

    Article  Google Scholar 

  36. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N Report. Ophthalmology. 1995;102(10):1434–44.

    Article  Google Scholar 

  37. Oellers P, Hahn P, Fekrat S. Central retinal vein occlusion. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  38. Browning DJ, Fraser CM. Retinal vein occlusions in patients taking warfarin. Ophthalmology. 2004;111(6):1196–200.

    Article  PubMed  Google Scholar 

  39. Sarao V, Bertoli F, Veritti D, Lanzetta P. Pharmacotherapy for treatment of retinal vein occlusion. Expert Opin Pharmacother. 2014;15(16):2373–84.

    Article  PubMed  CAS  Google Scholar 

  40. Ehlers JP, Kim SJ, Yeh S, Thorne JE, Mruthyunjaya P, Schoenberger SD, et al. Therapies for macular Edema associated with branch retinal vein occlusion: a report by the American Academy of ophthalmology. Ophthalmology. 2017;124(9):1412–23.

    Article  PubMed  Google Scholar 

  41. Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118(10):2041–9.

    Article  PubMed  Google Scholar 

  42. Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1102–12. e1.

    Article  PubMed  Google Scholar 

  43. Figueroa MS, Ruiz Moreno JM. BRAVO and CRUISE: ranibizumab for the treatment of macular edema secondary to retinal vein occlusion. Arch Soc Espan Oftalmol. 2012;87(Suppl 1):46–53.

    Article  Google Scholar 

  44. Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1124–33. e1.

    Article  PubMed  Google Scholar 

  45. Heier JS, Campochiaro PA, Yau L, Li Z, Saroj N, Rubio RG, et al. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology. 2012;119(4):802–9.

    Article  PubMed  Google Scholar 

  46. Campochiaro PA, Clark WL, Boyer DS, Heier JS, Brown DM, Vitti R, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology. 2015;122(3):538–44.

    Article  PubMed  Google Scholar 

  47. Clark WL, Boyer DS, Heier JS, Brown DM, Haller JA, Vitti R, et al. Intravitreal Aflibercept for macular Edema following branch retinal vein occlusion: 52-week results of the VIBRANT study. Ophthalmology. 2016;123(2):330–6.

    Article  PubMed  Google Scholar 

  48. Korobelnik JF, Holz FG, Roider J, Ogura Y, Simader C, Schmidt-Erfurth U, et al. Intravitreal Aflibercept injection for macular Edema resulting from central retinal vein occlusion: one-year results of the phase 3 GALILEO study. Ophthalmology. 2014;121(1):202–8.

    Article  PubMed  Google Scholar 

  49. Brown DM, Heier J, Clark WL, Boyer D, Vitti R, Berliner AJ, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol. 2013;155(3):429–37. e7.

    Article  PubMed  CAS  Google Scholar 

  50. Epstein DL, Algvere PV, von Wendt G, Seregard S, Kvanta A. Benefit from bevacizumab for macular edema in central retinal vein occlusion: twelve-month results of a prospective, randomized study. Ophthalmology. 2012;119(12):2587–91.

    Article  PubMed  Google Scholar 

  51. Yilmaz T, Cordero-Coma M. Use of bevacizumab for macular edema secondary to branch retinal vein occlusion: a systematic review. Graefes Arch Clin Exp Ophthalmol. 2012;250(6):787–93.

    Article  PubMed  CAS  Google Scholar 

  52. Scott IU, VanVeldhuisen PC, Ip MS, Blodi BA, Oden NL, Awh CC, et al. Effect of bevacizumab vs aflibercept on visual acuity among patients with macular edema due to central retinal vein occlusion: the SCORE2 randomized clinical trial. JAMA. 2017;317(20):2072–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Li J, Paulus YM, Shuai Y, Fang W, Liu Q, Yuan S. New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion. J Ophthalmol. 2017;2017:4936924.

    PubMed  PubMed Central  Google Scholar 

  54. Sun Z, Zhou H, Lin B, Jiao X, Luo Y, Zhang F, et al. Efficacy and safety of intravitreal conbercept injections in macular EDEMA secondary to retinal vein occlusion. Retina. 2017;37(9):1723–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bessette A, Kaiser PK. Branch retinal vein occlusion. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  56. Scott IU, Ip MS, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 6. Arch Ophthalmol. 2009;127(9):1115–28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ip MS, Scott IU, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 5. Arch Ophthalmol. 2009;127(9):1101–14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Haller JA, Bandello F, Belfort R Jr, Blumenkranz MS, Gillies M, Heier J, et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology. 2011;118(12):2453–60.

    Article  PubMed  Google Scholar 

  59. Jain N, Stinnett SS, Jaffe GJ. Prospective study of a fluocinolone acetonide implant for chronic macular edema from central retinal vein occlusion: thirty-six-month results. Ophthalmology. 2012;119(1):132–7.

    Article  PubMed  Google Scholar 

  60. Cabrera M, Yeh S, Albini TA. Sustained-release corticosteroid options. J Ophthalmol. 2014;2014:164692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Stone TW. ASRS Preferences and Trends Membership Survey. https://www.asrs.org/content/documents/_2015-pat-survey-results.pdf2016.

  62. Maturi RK, Chen V, Raghinaru D, Bleau L, Stewart MW. A 6-month, subject-masked, randomized controlled study to assess efficacy of dexamethasone as an adjunct to bevacizumab compared with bevacizumab alone in the treatment of patients with macular edema due to central or branch retinal vein occlusion. Clin Ophthalmol. 2014;8:1057–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Pichi F, Specchia C, Vitale L, Lembo A, Morara M, Veronese C, et al. Combination therapy with dexamethasone intravitreal implant and macular grid laser in patients with branch retinal vein occlusion. Am J Ophthalmol. 2014;157(3):607–15. e1.

    Article  PubMed  CAS  Google Scholar 

  64. Schneider EW, Mruthyunjaya P, Hariprasad SM. Combination therapy for macular edema secondary to retinal vein occlusion. Ophthalmic Surg Lasers Imaging Retina. 2013;44(5):434–8.

    Article  PubMed  Google Scholar 

  65. Inagaki K, Ohkoshi K, Ohde S, Deshpande GA, Ebihara N, Murakami A. Subthreshold micropulse photocoagulation for persistent macular Edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40. J Ophthalmol. 2014;2014:251257.

    Article  PubMed  PubMed Central  Google Scholar 

  66. de Smet MD, Meenink TC, Janssens T, Vanheukelom V, Naus GJ, Beelen MJ, et al. Robotic assisted Cannulation of occluded retinal veins. PLoS One. 2016;11(9):e0162037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Willekens K, Gijbels A, Schoevaerdts L, Esteveny L, Janssens T, Jonckx B, et al. Robot-assisted retinal vein cannulation in an in vivo porcine retinal vein occlusion model. Acta Ophthalmol. 2017;95(3):270–5.

    Article  PubMed  Google Scholar 

  68. Prasad PS, Oliver SC, Coffee RE, Hubschman JP, Schwartz SD. Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology. 2010;117(4):780–4.

    Article  PubMed  Google Scholar 

  69. Abri Aghdam K, Reznicek L, Soltan Sanjari M, Klingenstein A, Kernt M, Seidensticker F. Anti-VEGF treatment and peripheral retinal nonperfusion in patients with central retinal vein occlusion. Clin Ophthalmol. 2017;11:331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Campochiaro PA, Hafiz G, Mir TA, Scott AW, Solomon S, Zimmer-Galler I, et al. Scatter photocoagulation does not reduce macular Edema or treatment burden in patients with retinal vein occlusion: the RELATE trial. Ophthalmology. 2015;122(7):1426–37.

    Article  PubMed  Google Scholar 

  71. Pinhas A, Dubow M, Shah N, Cheang E, Liu CL, Razeen M, et al. Fellow eye changes in patients with nonischemic central retinal vein occlusion: assessment of perfused Foveal microvascular density and identification of nonperfused capillaries. Retina. 2015;35(10):2028–36.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kang HM, Chung EJ, Kim YM, Koh HJ. Spectral-domain optical coherence tomography (SD-OCT) patterns and response to intravitreal bevacizumab therapy in macular edema associated with branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2013;251(2):501–8.

    Article  PubMed  CAS  Google Scholar 

  73. Mimouni M, Segev O, Dori D, Geffen N, Flores V, Segal O. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular Edema secondary to vein occlusion. Am J Ophthalmol. 2017;182:160–7.

    Article  PubMed  Google Scholar 

  74. Kang JW, Yoo R, Jo YH, Kim HC. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina. 2017;37(9):1700–9.

    Article  PubMed  Google Scholar 

  75. Rodolfo M, Lisa T, Luca DA, Enrico B, Alfonso S, Marta DN, et al. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions. Sci Rep. 2017;7:40763.

    Article  PubMed Central  CAS  Google Scholar 

  76. Brown GC, Sharma S, Brown MM. Ocular ischemic syndrome. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  77. Terelak-Borys B, Skonieczna K, Grabska-Liberek I. Ocular ischemic syndrome - a systematic review. Med Sci Monit. 2012;18(8):Ra138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kang HM, Lee CS, Lee SC. Thinner subfoveal choroidal thickness in eyes with ocular ischemic syndrome than in unaffected contralateral eyes. Graefes Arch Clin Exp Ophthalmol. 2014;252(5):851–2.

    Article  PubMed  Google Scholar 

  79. Kim DY, Joe SG, Lee JY, Kim JG, Yang SJ. Choroidal thickness in eyes with unilateral ocular ischemic syndrome. J Ophthalmol. 2015;2015:620372.

    PubMed  PubMed Central  Google Scholar 

  80. Dhobb M, Ammar F, Bensaid Y, Benjelloun A, Benabderrazik T, Benyahia B. Arterial manifestations in Behcet’s disease: four new cases. Ann Vasc Surg. 1986;1(2):249–52.

    Article  PubMed  CAS  Google Scholar 

  81. Duker JS, Belmont JB. Ocular ischemic syndrome secondary to carotid artery dissection. Am J Ophthalmol. 1988;106(6):750–2.

    Article  PubMed  CAS  Google Scholar 

  82. Hamed LM, Guy JR, Moster ML, Bosley T. Giant cell arteritis in the ocular ischemic syndrome. Am J Ophthalmol. 1992;113(6):702–5.

    Article  PubMed  CAS  Google Scholar 

  83. Hong IH, Ahn JK, Chang S, Park SP. Diagnostic efficacy of total homocysteine and C-reactive protein for ocular ischemic syndrome. Eye. 2011;25(12):1650–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Papavasileiou E, Sobrin L, Papaliodis GN. Ocular ischemic syndrome presenting as retinal vasculitis in a patient with moyamoya syndrome. Retinal Cases Brief Rep. 2015;9(2):170–2.

    Article  Google Scholar 

  85. Tang Y, Luo D, Peng W, Huang F, Peng Y. Ocular ischemic syndrome secondary to carotid artery occlusion as a late complication of radiotherapy of nasopharyngeal carcinoma. J Neuroophthalmol. 2010;30(4):315–20.

    Article  PubMed  Google Scholar 

  86. Bennett LW. Ocular ischemic syndrome as initial manifestation of bilateral carotid occlusive disease. J Am Optom Assoc. 1997;68(4):250–60.

    PubMed  CAS  Google Scholar 

  87. Sivalingam A, Brown GC, Magargal LE, Menduke H. The ocular ischemic syndrome. II. Mortality and systemic morbidity. Int Ophthalmol. 1989;13(3):187–91.

    Article  PubMed  CAS  Google Scholar 

  88. Orrapin S, Rerkasem K. Carotid endarterectomy for symptomatic carotid stenosis. Cochrane Database Syst Rev. 2017;6:Cd001081.

    PubMed  Google Scholar 

  89. Cardia G, Porfido D, Guerriero S, Loizzi D, Giancipoli G. Retinal circulation after carotid artery revascularization. Angiology. 2011;62(5):372–5.

    Article  PubMed  Google Scholar 

  90. Kawaguchi S, Iida J, Uchiyama Y. Ocular circulation and chronic ocular ischemic syndrome before and after carotid artery revascularization surgery. J Ophthalmol. 2012;2012:350475.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Amselem L, Montero J, Diaz-Llopis M, Pulido JS, Bakri SJ, Palomares P, et al. Intravitreal bevacizumab (Avastin) injection in ocular ischemic syndrome. Am J Ophthalmol. 2007;144(1):122–4.

    Article  PubMed  CAS  Google Scholar 

  92. Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561–73.

    Article  PubMed  CAS  Google Scholar 

  93. Goldsmith JC, Bonham VL, Joiner CH, Kato GJ, Noonan AS, Steinberg MH. Framing the research agenda for sickle cell trait: building on the current understanding of clinical events and their potential implications. Am J Hematol. 2012;87(3):340–6.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Scott AW. Ophthalmic manifestations of sickle cell disease. South Med J. 2016;109(9):542–8.

    Article  PubMed  Google Scholar 

  95. Scott AW, Goldberg MF, Lutty GA. Hemoglobinopathies. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  96. Clarkson JG. The ocular manifestations of sickle-cell disease: a prevalence and natural history study. Trans Am Ophthalmol Soc. 1992;90:481–504.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Goldberg MF. Natural history of untreated proliferative sickle retinopathy. Arch Ophthalmol. 1971;85(4):428–37.

    Article  PubMed  CAS  Google Scholar 

  98. Penman AD, Talbot JF, Chuang EL, Thomas P, Serjeant GR, Bird AC. New classification of peripheral retinal vascular changes in sickle cell disease. Br J Ophthalmol. 1994;78(9):681–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Myint KT, Sahoo S, Thein AW, Moe S, Ni H. Laser therapy for retinopathy in sickle cell disease. Cochrane Database Syst Rev. 2015;10:Cd010790.

    Google Scholar 

  100. Condon PI, Serjeant GR. Photocoagulation in proliferative sickle retinopathy: results of a 5-year study. Br J Ophthalmol. 1980;64(11):832–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Goldberg MF. Treatment of proliferative sickle retinopathy. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(3):532–56.

    PubMed  CAS  Google Scholar 

  102. Bonanomi MT, Lavezzo MM. Sickle cell retinopathy: diagnosis and treatment. Arq Bras Oftalmol. 2013;76(5):320–7.

    Article  PubMed  Google Scholar 

  103. Mitropoulos PG, Chatziralli IP, Parikakis EA, Peponis VG, Amariotakis GA, Moschos MM. Intravitreal ranibizumab for stage IV proliferative sickle cell retinopathy: a first case report. Case Rep Ophthalmol Med. 2014;2014:682583.

    PubMed  PubMed Central  Google Scholar 

  104. Siqueira RC, Costa RA, Scott IU, Cintra LP, Jorge R. Intravitreal bevacizumab (Avastin) injection associated with regression of retinal neovascularization caused by sickle cell retinopathy. Acta Ophthalmol Scand. 2006;84(6):834–5.

    Article  PubMed  Google Scholar 

  105. Chen RW, Flynn HW Jr, Lee WH, Parke DW 3rd, Isom RF, Davis JL, et al. Vitreoretinal management and surgical outcomes in proliferative sickle retinopathy: a case series. Am J Ophthalmol. 2014;157(4):870–5. e1.

    Article  PubMed  Google Scholar 

  106. Williamson TH, Rajput R, Laidlaw DA, Mokete B. Vitreoretinal management of the complications of sickle cell retinopathy by observation or pars plana vitrectomy. Eye. 2009;23(6):1314–20.

    Article  PubMed  CAS  Google Scholar 

  107. Moshiri A, Ha NK, Ko FS, Scott AW. Bevacizumab presurgical treatment for proliferative sickle-cell retinopathy-related retinal detachment. Retinal Cases Brief Rep. 2013;7(3):204–5.

    Article  Google Scholar 

  108. Cho M, Kiss S. Detection and monitoring of sickle cell retinopathy using ultra wide-field color photography and fluorescein angiography. Retina. 2011;31(4):738–47.

    Article  PubMed  Google Scholar 

  109. Pahl DA, Green NS, Bhatia M, Chen RWS. New ways to detect pediatric sickle cell retinopathy: a comprehensive review. J Pediatr Hematol Oncol. 2017;39(8):618–25.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Han IC, Tadarati M, Pacheco KD, Scott AW. Evaluation of macular vascular abnormalities identified by optical coherence tomography angiography in sickle cell disease. Am J Ophthalmol. 2017;177:90–9.

    Article  PubMed  Google Scholar 

  111. Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848–55.

    Article  PubMed  CAS  Google Scholar 

  112. Sarraf D, Rahimy E, Fawzi AA, Sohn E, Barbazetto I, Zacks DN, et al. Paracentral acute middle maculopathy: a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol. 2013;131(10):1275–87.

    Article  PubMed  Google Scholar 

  113. Rahimy E, Kuehlewein L, Sadda SR, Sarraf D. Paracentral acute middle Maculopathy: what we knew then and what we know now. Retina. 2015;35(10):1921–30.

    Article  PubMed  Google Scholar 

  114. Ghasemi Falavarjani K, Phasukkijwatana N, Freund KB, Cunningham ET Jr, Kalevar A, McDonald HR, et al. En face optical coherence tomography analysis to assess the spectrum of perivenular ischemia and paracentral acute middle maculopathy in retinal vein occlusion. Am J Ophthalmol. 2017;177:131–8.

    Article  PubMed  Google Scholar 

  115. Grewal DS, Polascik BA, Kelly MP, Fekrat S. Widefield en face optical coherence tomography to quantify the extent of paracentral acute middle maculopathy. Can J Ophthalmol. 2017;52(3):e85–8.

    Article  PubMed  Google Scholar 

  116. Dansingani KK, Freund KB. Paracentral acute middle maculopathy and acute macular neuroretinopathy: related and distinct entities. Am J Ophthalmol. 2015;160(1):1–3.e2.

    Article  PubMed  Google Scholar 

  117. Chen X, Rahimy E, Sergott RC, Nunes RP, Souza EC, Choudhry N, et al. Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol. 2015;160(1):26–34.e1.

    Article  PubMed  Google Scholar 

  118. Browning DJ, Punjabi OS, Lee C. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography. Clin Ophthalmol. 2017;11:71–9.

    Article  PubMed  Google Scholar 

  119. Cohen MN, Dang S, Liang MC. Paracentral acute middle maculopathy after cardiac arrest. Ophthalmology. 2017;124(4):511.

    Article  PubMed  Google Scholar 

  120. Hussnain SA, Coady PA, Stoessel KM. Paracentral acute middle maculopathy: precursor to macular thinning in sickle cell retinopathy. BMJ Case Rep. 2017; epub 2017/04/28.

    Google Scholar 

  121. Shahlaee A, Sridhar J, Rahimy E, Shieh WS, Ho AC. Paracentral acute middle maculopathy associated with postviral purtscher-like retinopathy. Retinal Cases Brief Rep. 2017; epub 2017/01/14.

    Google Scholar 

  122. Christenbury JG, Klufas MA, Sauer TC, Sarraf D. OCT angiography of paracentral acute middle maculopathy associated with central retinal artery occlusion and deep capillary ischemia. Ophthal Surg Laser Imag Retina. 2015;46(5):579–81.

    Article  Google Scholar 

  123. Khan MA, Rahimy E, Shahlaee A, Hsu J, Ho AC. En face optical coherence tomography imaging of deep capillary plexus abnormalities in paracentral acute middle maculopathy. Ophthal Surg Laser Imag Retina. 2015;46(9):972–5.

    Article  Google Scholar 

  124. Nemiroff J, Phasukkijwatana N, Sarraf D. Optical coherence tomography angiography of deep capillary ischemia. Dev Ophthalmol. 2016;56:139–45.

    Article  PubMed  Google Scholar 

  125. Trese MG, Thanos A, Yonekawa Y, Randhawa S. Optical coherence tomography angiography of paracentral acute middle maculopathy associated with primary antiphospholipid syndrome. Ophthal Surg Laser Imag Retina. 2017;48(2):175–8.

    Article  Google Scholar 

  126. Pitkanen L, Tommila P, Kaarniranta K, Jaaskelainen JE, Kinnunen K. Retinal arterial macroaneurysms. Acta Ophthalmol. 2014;92(2):101–4.

    Article  PubMed  Google Scholar 

  127. Rabb MF, Gagliano DA, Teske MP. Retinal arterial macroaneurysms. Surv Ophthalmol. 1988;33(2):73–96.

    Article  PubMed  CAS  Google Scholar 

  128. Xu L, Wang Y, Jonas JB. Frequency of retinal macroaneurysms in adult Chinese: the Beijing eye study. Br J Ophthalmol. 2007;91(6):840–1.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chew EY, Murphy RP. Acquired retinal macroaneurysms. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  130. Sagara N, Kawaji T, Koshiyama Y, Inomata Y, Fukushima M, Tanihara H. Macular hole formation after macular haemorrhage associated with rupture of retinal arterial macroaneurysm. Br J Ophthalmol. 2009;93(10):1337–40.

    Article  PubMed  CAS  Google Scholar 

  131. Robertson DM. Macroaneurysms of the retinal arteries. Trans Am Acad Ophthalmol Otolaryngol. 1973;77(1):Op55–67.

    PubMed  CAS  Google Scholar 

  132. Palestine AG, Robertson DM, Goldstein BG. Macroaneurysms of the retinal arteries. Am J Ophthalmol. 1982;93(2):164–71.

    Article  PubMed  CAS  Google Scholar 

  133. Townsend-Pico WA, Meyers SM, Lewis H. Indocyanine green angiography in the diagnosis of retinal arterial macroaneurysms associated with submacular and preretinal hemorrhages: a case series. Am J Ophthalmol. 2000;129(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  134. Raymond LA. Neodymium:YAG laser treatment for hemorrhages under the internal limiting membrane and posterior hyaloid face in the macula. Ophthalmology. 1995;102(3):406–11.

    Article  PubMed  CAS  Google Scholar 

  135. Humayun M, Lewis H, Flynn HW Jr, Sternberg P Jr, Blumenkranz MS. Management of submacular hemorrhage associated with retinal arterial macroaneurysms. Am J Ophthalmol. 1998;126(3):358–61.

    Article  PubMed  CAS  Google Scholar 

  136. Nakamura H, Hayakawa K, Sawaguchi S, Gaja T, Nagamine N, Medoruma K. Visual outcome after vitreous, sub-internal limiting membrane, and/or submacular hemorrhage removal associated with ruptured retinal arterial macroaneurysms. Graefes Arch Clin Exp Ophthalmol. 2008;246(5):661–9.

    Article  PubMed  Google Scholar 

  137. Saika S, Yamanaka A, Yamanaka A, Minamide A, Kin K, Shirai K, et al. Subretinal administration of tissue-type plasminogen activator to speed the drainage of subretinal hemorrhage. Graefes Arch Clin Exp Ophthalmol. 1998;236(3):196–201.

    Article  PubMed  CAS  Google Scholar 

  138. Zhao P, Hayashi H, Oshima K, Nakagawa N, Ohsato M. Vitrectomy for macular hemorrhage associated with retinal arterial macroaneurysm. Ophthalmology. 2000;107(3):613–7.

    Article  PubMed  CAS  Google Scholar 

  139. Oie Y, Emi K. Surgical excision of retinal macroaneurysms with submacular hemorrhage. Jpn J Ophthalmol. 2006;50(6):550–3.

    Article  PubMed  Google Scholar 

  140. Koinzer S, Heckmann J, Tode J, Long-term RJ. Therapy-related visual outcome of 49 cases with retinal arterial macroaneurysm: a case series and literature review. Br J Ophthalmol. 2015;99(10):1345–53.

    Article  PubMed  Google Scholar 

  141. Cho HJ, Rhee TK, Kim HS, Han JI, Lee DW, Cho SW, et al. Intravitreal bevacizumab for symptomatic retinal arterial macroaneurysm. Am J Ophthalmol. 2013;155(5):898–904.

    Article  PubMed  CAS  Google Scholar 

  142. Javey G, Moshfeghi AN, Moshfeghi AA. Management of ruptured retinal arterial macroaneurysm with intravitreal bevacizumab. Ophthalmic Surg Lasers Imaging. 2010;41(4):1–5.

    PubMed  Google Scholar 

  143. Kishore K. Intravitreal bevacizumab for symptomatic retinal arterial macroaneurysm. Am J Ophthalmol. 2014;157(1):260.

    Article  PubMed  Google Scholar 

  144. Leung EH, Reddy AK, Vedula AS, Flynn HW Jr. Serial bevacizumab injections and laser photocoagulation for macular edema associated with a retinal artery macroaneurysm. Clin Ophthalmol. 2015;9:601–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Pichi F, Morara M, Torrazza C, Manzi G, Alkabes M, Balducci N, et al. Intravitreal bevacizumab for macular complications from retinal arterial macroaneurysms. Am J Ophthalmol. 2013;155(2):287–94. e1.

    Article  PubMed  CAS  Google Scholar 

  146. Tsakpinis D, Nasr MB, Tranos P, Krassas N, Giannopoulos T, Symeonidis C, et al. The use of bevacizumab in a multilevel retinal hemorrhage secondary to retinal macroaneurysm: a 39-month follow-up case report. Clin Ophthalmol. 2011;5:1475–7.

    PubMed  PubMed Central  Google Scholar 

  147. Erol MK, Dogan B, Coban DT, Toslak D, Cengiz A, Ozel D. Intravitreal ranibizumab therapy for retinal arterial macroaneurysm. Int J Clin Exp Med. 2015;8(7):11572–8.

    PubMed  PubMed Central  Google Scholar 

  148. Gass JD. A fluorescein angiographic study of macular dysfunction secondary to retinal vascular disease. V. Retinal telangiectasis. Arch Ophthalmol. 1968;80(5):592–605.

    Article  PubMed  CAS  Google Scholar 

  149. Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis. Update of classification and follow-up study. Ophthalmology. 1993;100(10):1536–46.

    Article  PubMed  CAS  Google Scholar 

  150. Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B. Idiopathic macular telangiectasia. Arch Ophthalmol. 2006;124(4):450–60.

    Article  PubMed  Google Scholar 

  151. Engelbert M, Yannuzzi LA. Idiopathic macular telangiectasia type 2: the progressive vasculopathy. Eur J Ophthalmol. 2013;23:1–137.

    Article  Google Scholar 

  152. Clemons TE, Gillies MC, Chew EY, Bird AC, Peto T, Figueroa MJ, et al. Baseline characteristics of participants in the natural history study of macular telangiectasia (MacTel) MacTel Project Report No. 2. Ophthalmic Epidemiol. 2010;17(1):66–73.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Charbel Issa P, Helb HM, Holz FG, Scholl HP. Correlation of macular function with retinal thickness in nonproliferative type 2 idiopathic macular telangiectasia. Am J Ophthalmol. 2008;145(1):169–75.

    Article  PubMed  Google Scholar 

  154. Powner MB, Gillies MC, Tretiach M, Scott A, Guymer RH, Hageman GS, et al. Perifoveal muller cell depletion in a case of macular telangiectasia type 2. Ophthalmology. 2010;117(12):2407–16.

    Article  PubMed  Google Scholar 

  155. Clemons TE, Gillies MC, Chew EY, Bird AC, Peto T, Wang JJ, et al. Medical characteristics of patients with macular telangiectasia type 2 (MacTel Type 2) MacTel project report no. 3. Ophthalmic Epidemiol. 2013;20(2):109–13.

    Article  PubMed  Google Scholar 

  156. Wu L. Multimodality imaging in macular telangiectasia 2: a clue to its pathogenesis. Indian J Ophthalmol. 2015;63(5):394–8.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Chew EY, Yannuzzi LA. Macular telangiectasia. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  158. Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, Gillies MC, et al. “En face” OCT imaging of the IS/OS junction line in type 2 idiopathic macular telangiectasia. Invest Ophthalmol Vis Sci. 2012;53(10):6145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, Gillies MC, et al. The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. Invest Ophthalmol Vis Sci. 2012;53(12):7889–95.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Runkle AP, Kaiser PK, Srivastava SK, Schachat AP, Reese JL, Ehlers JP. OCT angiography and ellipsoid zone mapping of macular telangiectasia type 2 from the AVATAR study. Invest Ophthalmol Vis Sci. 2017;58(9):3683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sallo FB, Leung I, Clemons TE, Peto T, Chew EY, Pauleikhoff D, et al. Correlation of structural and functional outcome measures in a phase one trial of ciliary neurotrophic factor in type 2 idiopathic macular telangiectasia. Retina. 2018;38(Suppl 1):S27–32.

    PubMed  PubMed Central  Google Scholar 

  162. Chidambara L, Gadde SG, Yadav NK, Jayadev C, Bhanushali D, Appaji AM, et al. Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol. 2016;100(11):1482–8.

    Article  PubMed  Google Scholar 

  163. Osaka R, Shiragami C, Ono A, Kobayashi M, Takasago Y, Yamashita A, et al. Clinical features of treated and untreated type 1 idiopathic macular telangiectasia without the occurrence of secondary choroidal neovascularization followed for 2 years in Japanese patients. Retina. 2018;38(Suppl 1):S114–22.

    PubMed  Google Scholar 

  164. Sigler EJ, Randolph JC, Calzada JI, Charles S. Comparison of observation, intravitreal bevacizumab, or pars plana vitrectomy for non-proliferative type 2 idiopathic macular telangiectasia. Graefes Arch Clin Exp Ophthalmol. 2013;251(4):1097–101.

    Article  PubMed  CAS  Google Scholar 

  165. Shukla D, Singh J, Kolluru CM, Kim R, Namperumalsamy P. Transpupillary thermotherapy for subfoveal neovascularization secondary to group 2A idiopathic juxtafoveolar telangiectasis. Am J Ophthalmol. 2004;138(1):147–9.

    Article  PubMed  Google Scholar 

  166. Snyers B, Verougstraete C, Postelmans L, Leys A, Hykin P. Photodynamic therapy of subfoveal neovascular membrane in type 2A idiopathic juxtafoveolar retinal telangiectasis. Am J Ophthalmol. 2004;137(5):812–9.

    Article  PubMed  CAS  Google Scholar 

  167. Toygar O, Guess MG, Youssef DS, Miller DM. Long-term outcomes of intravitreal bevacizumab therapy for subretinal neovascularization secondary to idiopathic macular telangiectasia type 2. Retina. 2016;36(11):2150–7.

    Article  PubMed  CAS  Google Scholar 

  168. Chew EY, Clemons TE, Peto T, Sallo FB, Ingerman A, Tao W, et al. Ciliary neurotrophic factor for macular telangiectasia type 2: results from a phase 1 safety trial. Am J Ophthalmol. 2015;159(4):659–66. e1.

    Article  PubMed  CAS  Google Scholar 

  169. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–5.

    Article  PubMed  Google Scholar 

  170. Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801–10.

    Article  PubMed  Google Scholar 

  171. Sarks SH. Senile choroidal sclerosis. Br J Ophthalmol. 1973;57(2):98–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Nishida Y, Fujiwara T, Imamura Y, Lima LH, Kurosaka D, Spaide RF. Choroidal thickness and visual acuity in highly myopic eyes. Retina. 2012;32(7):1229–36.

    Article  PubMed  Google Scholar 

  173. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–50.

    Article  PubMed  Google Scholar 

  174. Wang NK, Lai CC, Chu HY, Chen YP, Chen KJ, Wu WC, et al. Classification of early dry-type myopic maculopathy with macular choroidal thickness. Am J Ophthalmol. 2012;153(4):669–77. e1–2.

    Article  PubMed  Google Scholar 

  175. Wang S, Wang Y, Gao X, Qian N, Zhuo Y. Choroidal thickness and high myopia: a cross-sectional study and meta-analysis. BMC Ophthalmol. 2015;15:70.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Wang NK, Lai CC, Chou CL, Chen YP, Chuang LH, Chao AN, et al. Choroidal thickness and biometric markers for the screening of lacquer cracks in patients with high myopia. PLoS One. 2013;8(1):e53660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977;266(5597):66–8.

    Article  PubMed  CAS  Google Scholar 

  178. Zhu Y, Zhang T, Xu G, Peng L. Anti-vascular endothelial growth factor for choroidal neovascularisation in people with pathological myopia. Cochrane Database Syst Rev. 2016;12:Cd011160.

    PubMed  Google Scholar 

  179. Ikuno Y, Ohno-Matsui K, Wong TY, Korobelnik JF, Vitti R, Li T, et al. Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study. Ophthalmology. 2015;122(6):1220–7.

    Article  PubMed  Google Scholar 

  180. Tufail A, Narendran N, Patel PJ, Sivaprasad S, Amoaku W, Browning AC, et al. Ranibizumab in myopic choroidal neovascularization: the 12-month results from the REPAIR study. Ophthalmology. 2013;120(9):1944–5. e1.

    Article  PubMed  Google Scholar 

  181. Wolf S, Balciuniene VJ, Laganovska G, Menchini U, Ohno-Matsui K, Sharma T, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology. 2014;121(3):682–92. e2.

    Article  PubMed  Google Scholar 

  182. Ohno-Matsui K, Ishibashi T. Pathologic myopia. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  183. Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F. Pachychoroid: an inherited condition? Retina. 2015;35(1):10–6.

    Article  PubMed  Google Scholar 

  184. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33(8):1659–72.

    Article  PubMed  Google Scholar 

  185. Akkaya S. Spectrum of pachychoroid diseases. Int Ophthalmol. 2017; epub 2017/08/03.

    Google Scholar 

  186. Gallego-Pinazo R, Dolz-Marco R, Gomez-Ulla F, Mrejen S, Freund KB. Pachychoroid diseases of the macula. Med Hyp Discov Innov Ophthalmol. 2014;3(4):111–5.

    Google Scholar 

  187. Spaide RF, Campeas L, Haas A, Yannuzzi LA, Fisher YL, Guyer DR, et al. Central serous chorioretinopathy in younger and older adults. Ophthalmology. 1996;103(12):2070–9; discussion 9–80.

    Article  PubMed  CAS  Google Scholar 

  188. Lam D, Das S, Liu S, Lee V, Lu L. Central serous chorioretinopathy. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  189. Baran NV, Gurlu VP, Esgin H. Long-term macular function in eyes with central serous chorioretinopathy. Clin Exp Ophthalmol. 2005;33(4):369–72.

    Article  PubMed  Google Scholar 

  190. Yap EY, Robertson DM. The long-term outcome of central serous chorioretinopathy. Arch Ophthalmol. 1996;114(6):689–92.

    Article  PubMed  CAS  Google Scholar 

  191. Loo RH, Scott IU, Flynn HW Jr, Gass JD, Murray TG, Lewis ML, et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina. 2002;22(1):19–24.

    Article  PubMed  Google Scholar 

  192. Wang MS, Sander B, Larsen M. Retinal atrophy in idiopathic central serous chorioretinopathy. Am J Ophthalmol. 2002;133(6):787–93.

    Article  PubMed  Google Scholar 

  193. Agarwal A, Garg M, Dixit N, Godara R. Evaluation and correlation of stress scores with blood pressure, endogenous cortisol levels, and homocysteine levels in patients with central serous chorioretinopathy and comparison with age-matched controls. Indian J Ophthalmol. 2016;64(11):803–5.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chan LY, Adam RS, Adam DN. Localized topical steroid use and central serous retinopathy. J Dermatolog Treat. 2016;27(5):425–6.

    Article  PubMed  CAS  Google Scholar 

  195. Matet A, Daruich A, Zola M, Behar-Cohen F. Risk factors for recurrences of central serous chorioretinopathy. Retina. 2017; epub 2017/06/02.

    Google Scholar 

  196. Tittl MK, Spaide RF, Wong D, Pilotto E, Yannuzzi LA, Fisher YL, et al. Systemic findings associated with central serous chorioretinopathy. Am J Ophthalmol. 1999;128(1):63–8.

    Article  PubMed  CAS  Google Scholar 

  197. Yannuzzi LA, Type A. Behavior and central serous chorioretinopathy. Trans Am Ophthalmol Soc. 1986;84:799–845.

    PubMed  PubMed Central  CAS  Google Scholar 

  198. McCannel TA, Chmielowski B, Finn RS, Goldman J, Ribas A, Wainberg ZA, et al. Bilateral subfoveal neurosensory retinal detachment associated with MEK inhibitor use for metastatic cancer. JAMA Ophthalmol. 2014;132(8):1005–9.

    Article  PubMed  CAS  Google Scholar 

  199. Aliferis K, Petropoulos IK, Farpour B, Matter MA, Safran AB. Should central serous chorioretinopathy be added to the list of ocular side effects of phosphodiesterase 5 inhibitors? Ophthalmologica. 2012;227(2):85–9.

    Article  PubMed  CAS  Google Scholar 

  200. Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol. 2013;58(2):103–26.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Robertson DM, Ilstrup D. Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am J Ophthalmol. 1983;95(4):457–66.

    Article  PubMed  CAS  Google Scholar 

  202. Ricci F, Missiroli F, Regine F, Grossi M, Dorin G. Indocyanine green enhanced subthreshold diode-laser micropulse photocoagulation treatment of chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):597–607.

    Article  PubMed  CAS  Google Scholar 

  203. Framme C, Walter A, Berger L, Prahs P, Alt C, Theisen-Kunde D, et al. Selective retina therapy in acute and chronic-recurrent central serous Chorioretinopathy. Ophthalmologica. 2015;234(4):177–88.

    Article  PubMed  CAS  Google Scholar 

  204. Breukink MB, Mohabati D, van Dijk EH, den Hollander AI, de Jong EK, Dijkman G, et al. Efficacy of photodynamic therapy in steroid-associated chronic central serous chorioretinopathy: a case-control study. Acta Ophthalmol. 2016;94(6):565–72.

    Article  PubMed  CAS  Google Scholar 

  205. Erikitola OC, Crosby-Nwaobi R, Lotery AJ, Sivaprasad S. Photodynamic therapy for central serous chorioretinopathy. Eye. 2014;28(8):944–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Nicolo M, Zoli D, Musolino M, Traverso CE. Association between the efficacy of half-dose photodynamic therapy with indocyanine green angiography and optical coherence tomography findings in the treatment of central serous chorioretinopathy. Am J Ophthalmol. 2012;153(3):474–80. e1.

    Article  PubMed  Google Scholar 

  207. Peng SY, Lai CC, Wang NK, Wu WC, Hwang YS, Chen KJ, et al. Real-World experience with half-time versus half-dose photodynamic therapy in chronic central serous chorioretinopathy. J Ocul Pharmacol Ther. 2017;33(6):466–72.

    Article  PubMed  CAS  Google Scholar 

  208. Reibaldi M, Cardascia N, Longo A, Furino C, Avitabile T, Faro S, et al. Standard-fluence versus low-fluence photodynamic therapy in chronic central serous chorioretinopathy: a nonrandomized clinical trial. Am J Ophthalmol. 2010;149(2):307–15. e2.

    Article  PubMed  Google Scholar 

  209. Salehi M, Wenick AS, Law HA, Evans JR, Gehlbach P. Interventions for central serous chorioretinopathy: a network meta-analysis. Cochrane Database Syst Rev. 2015;12:Cd011841.

    Google Scholar 

  210. Senturk F, Karacorlu M, Ozdemir H, Karacorlu SA, Uysal O. Microperimetric changes after photodynamic therapy for central serous chorioretinopathy. Am J Ophthalmol. 2011;151(2):303–9. e1.

    Article  PubMed  Google Scholar 

  211. Shin JY, Woo SJ, Yu HG, Park KH. Comparison of efficacy and safety between half-fluence and full-fluence photodynamic therapy for chronic central serous chorioretinopathy. Retina. 2011;31(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  212. Kretz FT, Beger I, Koch F, Nowomiejska K, Auffarth GU, Koss MJ. Randomized clinical trial to compare micropulse photocoagulation versus half-dose verteporfin photodynamic therapy in the treatment of central serous chorioretinopathy. Ophthalm Surg Lasers Imag Retina. 2015;46(8):837–43.

    Article  Google Scholar 

  213. Ozmert E, Demirel S, Yanik O, Batioglu F. Low-fluence photodynamic therapy versus subthreshold micropulse yellow wavelength laser in the treatment of chronic central serous chorioretinopathy. J Ophthalmol. 2016;2016:3513794.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Chung YR, Seo EJ, Lew HM, Lee KH. Lack of positive effect of intravitreal bevacizumab in central serous chorioretinopathy: meta-analysis and review. Eye. 2013;27(12):1339–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Lim JW, Kim MU, Shin MC. Aqueous humor and plasma levels of vascular endothelial growth factor and interleukin-8 in patients with central serous chorioretinopathy. Retina. 2010;30(9):1465–71.

    Article  PubMed  Google Scholar 

  216. Bae SH, Heo JW, Kim C, Kim TW, Lee JY, Song SJ, et al. A randomized pilot study of low-fluence photodynamic therapy versus intravitreal ranibizumab for chronic central serous chorioretinopathy. Am J Ophthalmol. 2011;152(5):784–92. e2.

    Article  PubMed  CAS  Google Scholar 

  217. Broadhead GK, Chang A. Intravitreal aflibercept for choroidal neovascularisation complicating chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2015;253(6):979–81.

    Article  PubMed  Google Scholar 

  218. Pitcher JD 3rd, Witkin AJ, DeCroos FC, Ho AC. A prospective pilot study of intravitreal aflibercept for the treatment of chronic central serous chorioretinopathy: the contain study. Br J Ophthalmol. 2015;99(6):848–52.

    Article  PubMed  Google Scholar 

  219. Yang D, Eliott D. Systemic mineralocorticoid antagonists in the treatment of central serous chorioretinopathy. Semin Ophthalmol. 2017;32(1):36–42.

    Article  PubMed  Google Scholar 

  220. Zhao M, Celerier I, Bousquet E, Jeanny JC, Jonet L, Savoldelli M, et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J Clin Invest. 2012;122(7):2672–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Daruich A, Matet A, Dirani A, Gallice M, Nicholson L, Sivaprasad S, et al. Oral mineralocorticoid-receptor antagonists: real-life experience in clinical subtypes of nonresolving central serous Chorioretinopathy with chronic Epitheliopathy. Transl Vis Sci Technol. 2016;5(2):2.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Gong Q, Sun XH, Yuan ST, Liu QH. The relation of the serum aldosterone level and central serous chorioretinopathy—a pilot study. Eur Rev Med Pharmacol Sci. 2017;21(3):446–53.

    PubMed  CAS  Google Scholar 

  223. Pichi F, Carrai P, Ciardella A, Behar-Cohen F, Nucci P. Comparison of two mineralcorticosteroids receptor antagonists for the treatment of central serous chorioretinopathy. Int Ophthalmol. 2016; epub 2016/10/21.

    Google Scholar 

  224. Rose LI, Underwood RH, Newmark SR, Kisch ES, Williams GH. Pathophysiology of spironolactone-induced gynecomastia. Ann Intern Med. 1977;87(4):398–403.

    Article  PubMed  CAS  Google Scholar 

  225. Rahimy E, Pitcher JD 3rd, Hsu J, Adam MK, Shahlaee A, Samara WA, et al. A randomized double-blind placebo-control pilot study of eplerenone for the treatment of central serous chorioretinopathy (ecselsior). Retina. 2017; epub 2017/04/21.

    Google Scholar 

  226. Schwartz R, Habot-Wilner Z, Martinez MR, Nutman A, Goldenberg D, Cohen S, et al. Eplerenone for chronic central serous chorioretinopathy-a randomized controlled prospective study. Acta Ophthalmol. 2017;95(7):e610–8.

    Article  PubMed  CAS  Google Scholar 

  227. Golshahi A, Klingmuller D, Holz FG, Eter N. Ketoconazole in the treatment of central serous chorioretinopathy: a pilot study. Acta Ophthalmol. 2010;88(5):576–81.

    Article  PubMed  Google Scholar 

  228. Moisseiev E, Holmes AJ, Moshiri A, Morse LS. Finasteride is effective for the treatment of central serous chorioretinopathy. Eye. 2016;30(6):850–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Nielsen JS, Jampol LM. Oral mifepristone for chronic central serous chorioretinopathy. Retina. 2011;31(9):1928–36.

    Article  PubMed  CAS  Google Scholar 

  230. Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP. Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. Acta Ophthalmol Scand. 2005;83(2):161–7.

    Article  PubMed  Google Scholar 

  231. Inoue R, Sawa M, Tsujikawa M, Gomi F. Association between the efficacy of photodynamic therapy and indocyanine green angiography findings for central serous chorioretinopathy. Am J Ophthalmol. 2010;149(3):441–6. e1–2.

    Article  PubMed  CAS  Google Scholar 

  232. Yang L, Jonas JB, Wei W. Choroidal vessel diameter in central serous chorioretinopathy. Acta Ophthalmol. 2013;91(5):e358–62.

    Article  PubMed  Google Scholar 

  233. Dinc UA, Yenerel M, Tatlipinar S, Gorgun E, Alimgil L. Correlation of retinal sensitivity and retinal thickness in central serous chorioretinopathy. Ophthalmologica. 2010;224(1):2–9.

    Article  PubMed  Google Scholar 

  234. Yalcinbayir O, Gelisken O, Akova-Budak B, Ozkaya G, Gorkem Cevik S, Yucel AA. Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. Retina. 2014;34(4):705–12.

    Article  PubMed  Google Scholar 

  235. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, et al. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology. 2014;121(3):719–26.

    Article  PubMed  Google Scholar 

  236. Dysli C, Berger L, Wolf S, Zinkernagel MS. Fundus autofluorescence lifetimes and central serous chorioretinopathy. Retina. 2017;37(11):2151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Ersoz MG, Arf S, Hocaoglu M, Sayman Muslubas I, Karacorlu M. Indocyanine green angiography of pachychoroid pigment epitheliopathy. Retina. 2017; epub 2017/07/21.

    Google Scholar 

  238. Ersoz MG, Karacorlu M, Arf S, Hocaoglu M, Sayman Muslubas I. Pachychoroid pigment epitheliopathy in fellow eyes of patients with unilateral central serous chorioretinopathy. Br J Ophthalmol. 2017; epub 2017/08/06.

    Google Scholar 

  239. Ersoz MG, Karacorlu M, Arf S, Hocaoglu M, Sayman Muslubas I. Outer nuclear layer thinning in pachychoroid pigment epitheliopathy. Retina. 2017; epub 2017/04/21.

    Google Scholar 

  240. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015;35(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  241. Balaratnasingam C, Lee WK, Koizumi H, Dansingani K, Inoue M, Freund KB. Polypoidal choroidal vasculopathy: a distinct disease or manifestation of many? Retina. 2016;36(1):1–8.

    Article  PubMed  Google Scholar 

  242. Azar G, Wolff B, Mauget-Faysse M, Rispoli M, Savastano MC, Lumbroso B. Pachychoroid neovasculopathy: aspect on optical coherence tomography angiography. Acta Ophthalmol. 2017;95(4):421–7.

    Article  PubMed  Google Scholar 

  243. Li X. Polypoidal choroidal vasculopathy. In: Schachat AP, editor. Ryan’s retina, vol. 2. 6th ed. China: Elsevier; 2018.

    Google Scholar 

  244. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). 1990. Retina. 2012;32(Suppl 1):1–8.

    PubMed  Google Scholar 

  245. Yang LH, Jonas JB, Wei WB. Optical coherence tomographic enhanced depth imaging of polypoidal choroidal vasculopathy. Retina. 2013;33(8):1584–9.

    Article  PubMed  Google Scholar 

  246. Nakashizuka H, Mitsumata M, Okisaka S, Shimada H, Kawamura A, Mori R, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49(11):4729–37.

    Article  PubMed  Google Scholar 

  247. Nakashizuka H, Yuzawa M. Hyalinization of choroidal vessels in polypoidal choroidal vasculopathy. Surv Ophthalmol. 2011;56(3):278–9; author reply 9.

    Article  PubMed  Google Scholar 

  248. Gomi F, Tano Y. Polypoidal choroidal vasculopathy and treatments. Curr Opin Ophthalmol. 2008;19(3):208–12.

    Article  PubMed  Google Scholar 

  249. Lee MW, Yeo I, Wong D, Ang CL. Argon laser photocoagulation for the treatment of polypoidal choroidal vasculopathy. Eye. 2009;23(1):145–8.

    Article  PubMed  Google Scholar 

  250. Lai TY, Chan WM, Lam DS. Laser photocoagulation of indocyanine green aniographically identified feeder vessels to idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol. 2004;138(4):693–4; author reply 4.

    Article  PubMed  Google Scholar 

  251. Chan WM, Lam DS, Lai TY, Liu DT, Li KK, Yao Y, et al. Photodynamic therapy with verteporfin for symptomatic polypoidal choroidal vasculopathy: one-year results of a prospective case series. Ophthalmology. 2004;111(8):1576–84.

    Article  PubMed  Google Scholar 

  252. Lai TY, Lam CP, Luk FO, Chan RP, Chan WM, Liu DT, et al. Photodynamic therapy with or without intravitreal triamcinolone acetonide for symptomatic polypoidal choroidal vasculopathy. J Ocul Pharmacol Ther. 2010;26(1):91–5.

    Article  PubMed  CAS  Google Scholar 

  253. Miki A, Honda S, Kojima H, Nishizaki M, Nagai T, Fujihara M, et al. Visual outcome of photodynamic therapy for typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy over 5 years of follow-up. Jpn J Ophthalmol. 2013;57(3):301–7.

    Article  PubMed  CAS  Google Scholar 

  254. Kang HM, Kim YM, Koh HJ. Five-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;155(3):438–47. e1.

    Article  PubMed  Google Scholar 

  255. Baek J, Lee JH, Lee WK. Clinical relevance of aqueous vascular endothelial growth factor levels in polypoidal choroidal vasculopathy. Retina. 2017;37(5):943–50.

    Article  PubMed  Google Scholar 

  256. Tan CS, Lim TH, Hariprasad SM. Current management of polypoidal choroidal vasculopathy. Ophthalm Surg Laser Imag Retina. 2015;46(8):786–91.

    Article  CAS  Google Scholar 

  257. Wong RL, Lai TY. Polypoidal choroidal vasculopathy: an update on therapeutic approaches. J Ophthalm Vision Res. 2013;8(4):359–71.

    Google Scholar 

  258. Hikichi T, Higuchi M, Matsushita T, Kosaka S, Matsushita R, Takami K, et al. Results of 2 years of treatment with as-needed ranibizumab reinjection for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2013;97(5):617–21.

    Article  PubMed  Google Scholar 

  259. Hikichi T. Six-year outcomes of antivascular endothelial growth factor monotherapy for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2018;102(1):97–101.

    Article  PubMed  Google Scholar 

  260. Lee JE, Shin JP, Kim HW, Chang W, Kim YC, Lee SJ, et al. Efficacy of fixed-dosing aflibercept for treating polypoidal choroidal vasculopathy: 1-year results of the VAULT study. Graefes Arch Clin Exp Ophthalmol. 2017;255(3):493–502.

    Article  PubMed  CAS  Google Scholar 

  261. Oshima Y, Kimoto K, Yoshida N, Fujisawa K, Sonoda S, Kubota T, et al. One-year outcomes following intravitreal aflibercept for polypoidal choroidal vasculopathy in Japanese patients: the APOLLO study. Ophthalmologica. 2017;238(3):163–71.

    Article  PubMed  CAS  Google Scholar 

  262. Morimoto M, Matsumoto H, Mimura K, Akiyama H. Two-year results of a treat-and-extend regimen with aflibercept for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(10):1891–7.

    Article  PubMed  CAS  Google Scholar 

  263. Cheng Y, Shi X, Qu JF, Zhao MW, Li XX. Comparison of the 1-year outcomes of conbercept therapy between two different angiographic subtypes of polypoidal choroidal vasculopathy. Chin Med J. 2016;129(21):2610–6.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Qu J, Cheng Y, Li X, Yu L, Ke X. Efficacy of intravitreal injection of conbercept in polypoidal choroidal vasculopathy: subgroup analysis of the Aurora study. Retina. 2016;36(5):926–37.

    Article  PubMed  CAS  Google Scholar 

  265. Koh AH, Chen LJ, Chen SJ, Chen Y, Giridhar A, Iida T, et al. Polypoidal choroidal vasculopathy: evidence-based guidelines for clinical diagnosis and treatment. Retina. 2013;33(4):686–716.

    Article  PubMed  Google Scholar 

  266. Byon IS, Kwon HJ, Kim SI, Shin MK, Park SW, Lee JE. Reduced-fluence photodynamic therapy in polypoidal choroidal vasculopathy nonresponsive to ranibizumab. Ophthalm Surg Lasers Imag Retina. 2014;45(6):534–41.

    Article  Google Scholar 

  267. Farooq A, Frazier H, Marcus WB, Fechter C, Singh H, Marcus DM. Intravitreal aflibercept for neovascular polypoidal choroidal vasculopathy in a predominantly non-Asian population: RIVAL results. Ophthalm Surg Laser Imag Retina. 2017;48(1):34–52.

    Article  Google Scholar 

  268. Sakurai M, Baba T, Kitahashi M, Yokouchi H, Kubota-Taniai M, Bikbova G, et al. One-year results of intravitreal ranibizumab combined with reduced-fluence photodynamic therapy for polypoidal choroidal vasculopathy. Clin Ophthalmol. 2014;8:235–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Wong IY, Shi X, Gangwani R, Iu LP, Fung N, Li Q, et al. One-year results of half- versus standard-dose photodynamic therapy combined with ranibizumab for polypoidal choroidal vasculopathy. Retina. 2017. https://doi.org/10.1097/IAE.0000000000001614.

  270. Ho M, Woo DC, Chan VC, Young AL, Brelen ME. Treatment of polypoidal choroidal vasculopathy by photodynamic therapy, aflibercept and dexamethasone triple therapy. Sci Rep. 2016;6:36870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Sakai T, Kato N, Kubota M, Tsuneoka H. Effects of photodynamic therapy plus intravitreal aflibercept with subtenon triamcinolone injections for aflibercept-resistant polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1565–71.

    Article  PubMed  CAS  Google Scholar 

  272. Lee H, Ji B, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after anti-VEGF treatment in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Retina. 2016;36(3):465–75.

    Article  PubMed  CAS  Google Scholar 

  273. Sakurada Y, Sugiyama A, Tanabe N, Kikushima W, Kume A, Iijima H. Choroidal thickness as a prognostic factor of photodynamic therapy with aflibercept or ranibizumab for polypoidal choroidal vasculopathy. Retina. 2017;37(10):1866–72.

    Article  PubMed  CAS  Google Scholar 

  274. Yanagi Y, Ting DSW, Ng WY, Lee SY, Mathur R, Chan CM, et al. Choroidal vascular hyperpermeability as a predictor of treatment response for polypoidal choroidal vasculopathy. Retina. 2017; epub 2017/07/14.

    Google Scholar 

  275. Suzuki M, Nagai N, Shinoda H, Uchida A, Kurihara T, Tomita Y, et al. Distinct responsiveness to intravitreal ranibizumab therapy in Polypoidal choroidal vasculopathy with single or multiple polyps. Am J Ophthalmol. 2016;166:52–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilraj S. Grewal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Grewal, D.S. (2018). Retinal and Choroidal Vascular Diseases. In: Yiu, G. (eds) Vitreoretinal Disorders. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8545-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8545-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8544-4

  • Online ISBN: 978-981-10-8545-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics