Skip to main content

Bioelectroremediation of Sediments

  • Chapter
  • First Online:
Bioelectrochemistry Stimulated Environmental Remediation
  • 973 Accesses

Abstract

Bioremediation of the contaminated sediments is one of the most challenging environmental problems due to the high concentration of recalcitrant contaminants and low chemical diffusion efficiency. Compared to traditional methods, sediment bioelectrochemical systems (SBESs) have many advantages for sediment bioremediation such as high efficiency, low maintenance cost, non-secondary contamination, and electricity generation. Typically, SBES has an anode embedded in sediment and a cathode floating in overlying water so that the sediment substrate oxidization can be motivated by the dissolved oxygen reduction. Several successful pilot-scale studies suggested that SBESs might be the first widely applied BESs as a bioremediation or power supply device in contaminated or remote environments. To date, over 100 studies on the structure, material, power recovery, or contaminant removal capacity of SBES have been reported. This section will focus on the contaminant removal capacity of SBESs, including the principles of different types of SBESs, commonly biogeochemical processes, contaminant removal capacities, and the possible microbial or functional gene networks in SBESs. A future development and perspective of the SBESs-based bioelectroremediation of sediments will also be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li WW, Yu HQ (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33:1–12

    Article  CAS  Google Scholar 

  2. Kronenberg M, Trably E, Bernet N et al (2017) Biodegradation of polycyclic aromatic hydrocarbons: using microbial bioelectrochemical systems to overcome an impasse. Environ Pollut 231:509–523

    Article  CAS  Google Scholar 

  3. Yan Z, He Y, Cai H et al (2017) Interconnection of key microbial functional genes for enhanced benzo[a]pyrene biodegradation in sediments by microbial electrochemistry. Environ Sci Technol 51:8519–8529

    Article  CAS  Google Scholar 

  4. Tender LM, Reimers CE, Stecher HA et al (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    Article  CAS  Google Scholar 

  5. Yang Y, Lu Z, Lin X et al (2015) Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments. Bioresour Technol 179:615–618

    Article  CAS  Google Scholar 

  6. De Schamphelaire L, Rabaey K, Boeckx P et al (2008) Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microb Biotechnol 1:446–462

    Article  CAS  Google Scholar 

  7. Zhang T, Gannon SM, Nevin KP et al (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020

    Article  CAS  Google Scholar 

  8. Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93

    Article  CAS  Google Scholar 

  9. Lovley DR (2002) Dissimilatory metal reduction: from early life to bioremediation. ASM News 68:231–237

    Google Scholar 

  10. Reimers CE, Tender LM, Fertig S et al (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195

    Article  CAS  Google Scholar 

  11. Donovan C, Dewan A, Heo D et al (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42:8591–8596

    Article  CAS  Google Scholar 

  12. Shantaram A, Beyenal H, Raajan R et al (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042

    Article  CAS  Google Scholar 

  13. Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196:9568–9573

    Article  CAS  Google Scholar 

  14. Tender LM, Gray SA, Groveman E et al (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575

    Article  CAS  Google Scholar 

  15. Hong SW, Kim HJ, Choi YS et al (2008) Field experiments on bioelectricity production from Lake sediment using microbial fuel cell technology. Bull Kor Chem Soc 29:2189–2194

    Article  CAS  Google Scholar 

  16. Yu H, Feng CH, Liu XP et al (2016) Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation. Environ Pollut 211:81–89

    Article  CAS  Google Scholar 

  17. Chun CL, Payne R, Sowers KR et al (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141–152

    Article  CAS  Google Scholar 

  18. Yan F, Reible DD (2012) PAH degradation and redox control in an electrode enhanced sediment cap. J Chem Technol Biotechnol 87:1222–1228

    Article  CAS  Google Scholar 

  19. Sun M, Yan F, Zhang RL et al (2010) Redox control and hydrogen production in sediment caps using carbon cloth electrodes. Environ Sci Technol 44:8209–8215

    Article  CAS  Google Scholar 

  20. Viggi CC, Presta E, Bellagamba M et al (2015) The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front Microbiol 6:881

    Google Scholar 

  21. Matturro B, Viggi CC, Aulenta F et al (2017) Cable Bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front Microbiol 8:952

    Article  Google Scholar 

  22. Zhang YF, Angelidaki I (2016) Microbial electrochemical systems and technologies: it is time to report the capital costs. Environ Sci Technol 50:5432–5433

    Article  CAS  Google Scholar 

  23. Erable B, Lacroix R, Etcheverry L et al (2013) Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes. Bioresour Technol 142:510–516

    Article  CAS  Google Scholar 

  24. Holmes DE, Bond DR, O'Neill RA et al (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190

    Article  CAS  Google Scholar 

  25. Daghio M, Vaiopoulou E, Patil SA et al (2016) Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. Appl Environ Microbiol 82:297–307

    Article  CAS  Google Scholar 

  26. Hsu L, Chadwick B, Kagan J et al (2013) Scale up considerations for sediment microbial fuel cells. RSC Adv 3:15947–15954

    Article  CAS  Google Scholar 

  27. Wang HM, Park JD, Ren ZJ (2015) Practical energy harvesting for microbial fuel cells: a review. EnvironSci Technol 49:3267–3277

    Article  CAS  Google Scholar 

  28. Ewing T, Ha PT, Babauta JT et al (2014) Scale-up of sediment microbial fuel cells. J Power Sources 272:311–319

    Article  CAS  Google Scholar 

  29. Zhuang L, Zhou SG (2009) Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem Commun 11:937–940

    Article  CAS  Google Scholar 

  30. Karra U, Huang GX, Umaz R et al (2013) Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Bioresour Technol 144:477–484

    Article  CAS  Google Scholar 

  31. Zhao NN, Angelidaki I, Zhang Y (2017) Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol. Water Res 109:367–374

    Article  CAS  Google Scholar 

  32. Nitisoravut R, Regmi R (2017) Plant microbial fuel cells: a promising biosystems engineering. Renew Sust Energ Rev 76:81–89

    Article  CAS  Google Scholar 

  33. Yan ZS, Jiang HL, Cai HY et al (2015) Complex interactions between the Macrophyte Acorus Calamus and microbial fuel cells during pyrene and benzo[a]pyrene degradation in sediments. Sci Rep 5:10709

    Article  Google Scholar 

  34. Lu L, Xing DF, Ren ZJ (2015) Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour Technol 195:115–121

    Article  CAS  Google Scholar 

  35. Liu ST, Song HL, Li XN et al (2013) Power generation enhancement by utilizing plant Photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoener 2:15158–15166

    Google Scholar 

  36. Erable B, Etcheverry L, Bergel A (2011) From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater. Biofouling 27:319–326

    Article  CAS  Google Scholar 

  37. Yang Y, Guo J, Sun G et al (2013) Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12. Bioresour Technol 128C:472–478

    Article  CAS  Google Scholar 

  38. Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4:4896–4906

    Article  CAS  Google Scholar 

  39. Ryckelynck N, Stecher H, Reimers CE (2005) Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76:113–139

    Article  Google Scholar 

  40. Dutta PK, Keller J, Yuan Z et al (2009) Role of sulfur during acetate oxidation in biological anodes. Environ Sci Technol 43:3839–3845

    Article  CAS  Google Scholar 

  41. Zhang T, Bain TS, Barlett MA et al (2014) Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1. Microbiology 160:123–129

    Article  CAS  Google Scholar 

  42. Mahadevan R, Palsson BO, Lovley DR (2011) In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol 9:39–50

    Article  CAS  Google Scholar 

  43. Koch C, Harnisch F (2016) What is the essence of microbial Electroactivity? Front Microbiol 7:1890

    Article  Google Scholar 

  44. Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295

    Article  CAS  Google Scholar 

  45. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  Google Scholar 

  46. Zhou YL, Yang Y, Chen M et al (2014) To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments. Bioresour Technol 159:232–239

    Article  CAS  Google Scholar 

  47. Rezaei F, Richard TL, Brennan RA et al (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41:4053–4058

    Article  CAS  Google Scholar 

  48. Sajana TK, Ghangrekar MM, Mitra A (2014) Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol 155:84–90

    Article  CAS  Google Scholar 

  49. Zhao Q, Li R, Ji M et al (2016) Organic content influences sediment microbial fuel cell performance and community structure. Bioresour Technol 220:549–556

    Article  CAS  Google Scholar 

  50. Lowy DA, Tender LM, Zeikus JG et al (2006) Harvesting energy from the marine sediment-water interface II – kinetic activity of anode materials. Biosens Bioelectron 21:2058–2063

    Article  CAS  Google Scholar 

  51. Lowy DA, Tender LM (2008) Harvesting energy from the marine sediment-water interface III. Kinetic activity of quinone- and antimony-based anode materials. J Power Sources 185:70–75

    Article  CAS  Google Scholar 

  52. Friedman ES, McPhillips LE, Werner JJ et al (2015) Methane emission in a specific riparian-zone sediment decreased with bioelectrochemical manipulation and corresponded to the microbial community dynamics. Front Microbiol 6:1523

    Google Scholar 

  53. Lu AH, Li Y, Jin S (2012) Interactions between semiconducting minerals and Bacteria under light. Elements 8:125–130

    Article  CAS  Google Scholar 

  54. Kato S, Hashimoto K, Watanabe K (2011) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  Google Scholar 

  55. Wang H, Liu DM, Lu L et al (2012) Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal. Bioresour Technol 116:80–85

    Article  CAS  Google Scholar 

  56. He Z, Shao H, Angenent LT (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens Bioelectron 22:3252–3255

    Article  CAS  Google Scholar 

  57. Babauta JT, Hsu L, Atci E et al (2014) Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells. ChemSusChem 7:2898–2906

    Article  CAS  Google Scholar 

  58. Zhang Y, Angelidaki I (2012) Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res 46:6445–6453

    Article  CAS  Google Scholar 

  59. Li H, Tian Y, Qu Y et al (2017) A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration. Sci Rep 7:39802

    Article  CAS  Google Scholar 

  60. Yan Z, Song N, Cai H et al (2012) Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater 199–200:217–225

    Article  CAS  Google Scholar 

  61. Zhang HK, Zhu DW, Song TS et al (2015) Effects of the presence of sheet iron in freshwater sediment on the performance of a sediment microbial fuel cell. Int J Hydrog Energ 40:16566–16571

    Article  CAS  Google Scholar 

  62. Xu X, Zhao Q, Wu M et al (2017) Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresour Technol 225:402–408

    Article  CAS  Google Scholar 

  63. Xu X, Zhao QL, Wu MS (2015) Improved biodegradation of total organic carbon and polychlorinated biphenyls for electricity generation by sediment microbial fuel cell and surfactant addition. RSC Adv 5:62534–62538

    Article  CAS  Google Scholar 

  64. Yang Y, Xu M, He Z et al (2013) Microbial electricity generation enhances decabromodiphenyl ether (BDE-209) degradation. PLoS One 8:e70686

    Article  CAS  Google Scholar 

  65. Xu MY, Chen XJ, Qiu MD et al (2012) Bar-coded pyrosequencing reveals the responses of PBDE-degrading microbial communities to Electron donor amendments. PLoS One 7:e30439

    Article  CAS  Google Scholar 

  66. Zhu D, Wang DB, Song TS et al (2016) Enhancement of cellulose degradation in freshwater sediments by a sediment microbial fuel cell. Biotechnol Lett 38:271–277

    Article  CAS  Google Scholar 

  67. Morris JM, Jin S (2012) Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater 13:474–477

    Article  CAS  Google Scholar 

  68. Xia C, Xu M, Liu J et al (2015) Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity. Bioresour Technol 190:420–423

    Article  CAS  Google Scholar 

  69. Li HN, He WH, Qu YP et al (2017) Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment. J Power Sources 356:430–437

    Article  CAS  Google Scholar 

  70. Wang X, Cai Z, Zhou QX et al (2012) Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol Bioeng 109:426–433

    Article  CAS  Google Scholar 

  71. Li X, Wang X, Ren ZJ et al (2015) Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere 141:62–70

    Article  CAS  Google Scholar 

  72. Li X, Wang X, Zhao Q et al (2016) Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens Bioelectron 85:135–141

    Article  CAS  Google Scholar 

  73. Chen S, Rotaru AE, Shrestha PM et al (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    Article  CAS  Google Scholar 

  74. Lu L, Yazdi H, Jin S et al (2014) Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Hazard Mater 274:8–15

    Article  CAS  Google Scholar 

  75. Hong SW, Kim HS, Chung TH (2010) Alteration of sediment organic matter in sediment microbial fuel cells. Environ Pollut 158:185–191

    Article  CAS  Google Scholar 

  76. Ueno Y, Kitajima Y (2012) Suppression of methane gas emission from sediment using a bioelectrochemical system. Environ Eng Manag J 11:1833–1837

    Article  CAS  Google Scholar 

  77. Sajana TK, Ghangrekar MM, Mitra A (2013) Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac Eng 57:101–107

    Article  Google Scholar 

  78. Song TS, Yan ZS, Zhao ZW et al (2011) Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst Eng 34:621–627

    Article  CAS  Google Scholar 

  79. Yates MD, Kiely PD, Call DF et al (2012) Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6:2002–2013

    Article  CAS  Google Scholar 

  80. Mathis BJ, Marshall CW, Milliken CE et al (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78:147–155

    Article  CAS  Google Scholar 

  81. Martins G, Peixoto L, Ribeiro DC et al (2010) Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): phylogenetic affiliation and electrochemical activity of sediment bacteria. Bioelectrochemistry 78:67–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Xu, M. (2019). Bioelectroremediation of Sediments. In: Wang, AJ., Liang, B., Li, ZL., Cheng, HY. (eds) Bioelectrochemistry Stimulated Environmental Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-8542-0_11

Download citation

Publish with us

Policies and ethics