Skip to main content

Bioengineering of Bacterial Extracellular Electron Transfer Towards Sustainable Wastewater Treatment

  • Chapter
  • First Online:
Bioelectrochemistry Stimulated Environmental Remediation

Abstract

Extracellular electron transfer (EET) referring to electron exchange between cells and solid matters is a unique electron transport process in bacteria that enables cells with very special character of electrode respiration. Based on bacterial electrode respiration, various bioelectrochemical systems (BES) for efficient wastewater treatment have been developed during the past decades. Besides augmentation of wastewater treatment, the BES are capable of harvesting the energy and recovery of resources from wastewater and can also produce value-added products by upgrading CO2 that was emitted during wastewater treatment. Therefore, BES hold a great promise to develop an energy-saving, emission-reducing, and economic feasible wastewater treatment approach for sustainable development, while EET efficiency engineering became the key step for the performance optimization of BES. In this chapter, typical EET pathways in several model exoelectrogens were introduced, and the potential of EET engineering for performance improvement of BES was highlighted. Moreover, future research directions for EET and BES engineering were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629. https://doi.org/10.1039/B703627M

    Article  Google Scholar 

  2. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. https://doi.org/10.1038/nature03661

    Article  CAS  Google Scholar 

  3. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc Roy Soc London 84(571):260–276

    Article  Google Scholar 

  4. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381. https://doi.org/10.1038/nrmicro2113

    Article  CAS  Google Scholar 

  5. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508. https://doi.org/10.1038/nrmicro1442

    Article  CAS  Google Scholar 

  6. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103-10. https://doi.org/10.1128/mBio.00103-10

    Article  CAS  Google Scholar 

  7. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662. https://doi.org/10.1038/nrmicro.2016.93

    Article  CAS  Google Scholar 

  8. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. https://doi.org/10.1126/science.1217412

    Article  CAS  Google Scholar 

  9. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716. https://doi.org/10.1038/nrmicro2422

    Article  CAS  Google Scholar 

  10. Bajracharya S, Sharma M, Mohanakrishna G, Dominguez Benneton X, Strik DPBTB, Sarma PM, Pant D (2016) An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy 98:153–170. https://doi.org/10.1016/j.renene.2016.03.002

    Article  CAS  Google Scholar 

  11. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459. https://doi.org/10.1016/j.tibtech.2008.04.008

    Article  CAS  Google Scholar 

  12. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31(8):1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001

    Article  CAS  Google Scholar 

  13. Sadhukhan J, Lloyd JR, Scott K, Premier GC, Yu EH, Curtis T, Head IM (2016) A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO. Renew Sust Energ Rev 56:116–132. https://doi.org/10.1016/j.rser.2015.11.015

    Article  CAS  Google Scholar 

  14. Arends JBA (2018) The next step towards usable microbial bioelectrochemical sensors? Microb Biotechnol 11(1):20–21. https://doi.org/10.1111/1751-7915.12590

    Article  Google Scholar 

  15. Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575. https://doi.org/10.3389/fmicb.2015.00575

    Article  Google Scholar 

  16. Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6(9):573–579. https://doi.org/10.1038/nnano.2011.119

    Article  Google Scholar 

  17. Coursolle D, Gralnick JA (2010) Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol 77(4):995–1008. https://doi.org/10.1111/j.1365-2958.2010.07266.x

    Article  CAS  Google Scholar 

  18. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6:e16649. https://doi.org/10.1371/journal.pone.0016649

    Article  CAS  Google Scholar 

  19. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci U S A 108(23):9384–9389. https://doi.org/10.1073/pnas.1017200108

    Article  Google Scholar 

  20. Firer-Sherwood M, Pulcu GS, Elliott SJ (2008) Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. JBIC J Biol Inorg Chem 13(6):849. https://doi.org/10.1007/s00775-008-0398-z

    Article  CAS  Google Scholar 

  21. Fonseca Bruno M, Paquete Catarina M, Neto Sónia E, Pacheco I, Soares Cláudio M, Louro Ricardo O (2013) Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem J 449(1):101–108. https://doi.org/10.1042/bj20121467

    Article  CAS  Google Scholar 

  22. Kolker E, Picone AF, Galperin MY, Romine MF, Higdon R, Makarova KS, Kolker N, Anderson GA, Qiu X, Auberry KJ, Babnigg G, Beliaev AS, Edlefsen P, Elias DA, Gorby YA, Holzman T, Klappenbach JA, Konstantinidis KT, Land ML, Lipton MS, McCue L-A, Monroe M, Pasa-Tolic L, Pinchuk G, Purvine S, Serres MH, Tsapin S, Zakrajsek BA, Zhu W, Zhou J, Larimer FW, Lawrence CE, Riley M, Collart FR, Yates JR, Smith RD, Giometti CS, Nealson KH, Fredrickson JK, Tiedje JM (2005) Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A 102(6):2099–2104. https://doi.org/10.1073/pnas.0409111102

    Article  CAS  Google Scholar 

  23. Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187(20):7138–7145. https://doi.org/10.1128/jb.187.20.7138-7145.2005

    Article  CAS  Google Scholar 

  24. Okamoto A, Hashimoto K, Nealson KH, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci U S A 110:7856. https://doi.org/10.1073/pnas.1220823110

    Article  Google Scholar 

  25. Ross DE, Brantley SL, Tien M (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75(16):5218–5226. https://doi.org/10.1128/aem.00544-09

    Article  CAS  Google Scholar 

  26. Lloyd JR, Leang C, Hodges Myerson AL, Coppi MV, Ciufo S, Methé B, Sandler SJ, Lovley DR (2003) Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369:153–161. https://doi.org/10.1042/bj20020597

    Article  CAS  Google Scholar 

  27. Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969. https://doi.org/10.1126/science.1088727

    Article  CAS  Google Scholar 

  28. Segura D, Mahadevan R, Juárez K, Lovley DR (2008) Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLoS Comput Biol 4(2):e36. https://doi.org/10.1371/journal.pcbi.0040036

    Article  CAS  Google Scholar 

  29. Santos TC, Silva MA, Morgado L, Dantas JM, Salgueiro CA (2015) Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer. Dalton Trans 44(20):9335–9344. https://doi.org/10.1039/C5DT00556F

    Article  CAS  Google Scholar 

  30. Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9(1):109. https://doi.org/10.1186/1471-2180-9-109

    Article  CAS  Google Scholar 

  31. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348. https://doi.org/10.1128/aem.01444-06

    Article  CAS  Google Scholar 

  32. Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR (2018) Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J 12:48–58. https://doi.org/10.1038/ismej.2017.141

    Article  CAS  Google Scholar 

  33. Vargas M, Malvankar NS, Tremblay P-L, Leang C, Smith JA, Patel P, Synoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105. https://doi.org/10.1128/mBio.00105-1

    Article  Google Scholar 

  34. Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192(1):365–369. https://doi.org/10.1128/jb.01188-09

    Article  CAS  Google Scholar 

  35. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

    Article  CAS  Google Scholar 

  36. Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641. https://doi.org/10.1016/j.copbio.2009.09.006

    Article  CAS  Google Scholar 

  37. Kumar A, Hsu LH-H, Kavanagh P, Barrière F, Lens PNL, Lapinsonnière L, Lienhard VJH, Schröder U, Jiang X, Leech D (2017) The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1:0024. https://doi.org/10.1038/s41570-017-0024

    Article  CAS  Google Scholar 

  38. Yong Y-C, Yu Y-Y, Zhang X, Song H (2014) Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Ed 53(17):4480–4483. https://doi.org/10.1002/anie.201400463

    Article  CAS  Google Scholar 

  39. Okamoto A, Hashimoto K, Nealson KH (2014) Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer. Angew Chem Int Ed 53(41):10988–10991. https://doi.org/10.1002/anie.201407004

    Article  CAS  Google Scholar 

  40. Bird LJ, Bonnefoy V, Newman DK (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19(7):330–340. https://doi.org/10.1016/j.tim.2011.05.001

    Article  CAS  Google Scholar 

  41. Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80(2):142–150. https://doi.org/10.1016/j.bioelechem.2010.07.005

    Article  CAS  Google Scholar 

  42. Bose A, Gardel EJ, Vidoudez C, Parra EA, Girguis PR (2014) Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5:3391. https://doi.org/10.1038/ncomms4391

    Article  CAS  Google Scholar 

  43. Doud DFR, Angenent LT (2014) Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ Sci Technol Lett 1(9):351–355. https://doi.org/10.1021/ez500244n

    Article  CAS  Google Scholar 

  44. Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, Merkley ED, Lipton MS, Butt JN, Richardson DJ, Zachara JM, Fredrickson JK, Rosso KM, Shi L (2012) Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol 3:37. https://doi.org/10.3389/fmicb.2012.00037

    Article  CAS  Google Scholar 

  45. Shi L, Rosso Kevin M, Zachara John M, Fredrickson James K (2012) Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochem Soc Trans 40(6):1261–1267. https://doi.org/10.1042/bst20120098

    Article  CAS  Google Scholar 

  46. Liu J, Yong Y-C, Song H, Li CM (2012) Activation enhancement of citric acid cycle to promote Bioelectrocatalytic activity of arcA knockout Escherichia coli toward high-performance microbial fuel cell. ACS Catal 2(8):1749–1752. https://doi.org/10.1021/cs3003808

    Article  CAS  Google Scholar 

  47. Shalel-Levanon S, San K-Y, Bennett GN (2005) Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng 7(5):364–374. https://doi.org/10.1016/j.ymben.2005.07.001

    Article  CAS  Google Scholar 

  48. Singh A, Lynch MD, Gill RT (2009) Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab Eng 11(6):347–354. https://doi.org/10.1016/j.ymben.2009.07.002

    Article  CAS  Google Scholar 

  49. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661. https://doi.org/10.1128/aem.72.5.3653-3661.2006

    Article  CAS  Google Scholar 

  50. Yong Y-C, Yu Y-Y, Yang Y, Li CM, Jiang R, Wang X, Wang J-Y, Song H (2012) Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells. Electrochem Commun 19:13–16. https://doi.org/10.1016/j.elecom.2012.03.002

    Article  CAS  Google Scholar 

  51. Min D, Cheng L, Zhang F, Huang X-N, Li D-B, Liu D-F, Lau T-C, Mu Y, Yu H-Q (2017) Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environ Sci Technol 51(9):5082–5089. https://doi.org/10.1021/acs.est.6b04640

    Article  CAS  Google Scholar 

  52. Tang YJ, Hwang JS, Wemmer DE, Keasling JD (2007) Shewanella oneidensis MR-1 Fluxome under various oxygen conditions. Appl Environ Microbiol 73(3):718–729. https://doi.org/10.1128/aem.01532-06

    Article  CAS  Google Scholar 

  53. Zhu G, Yang Y, Liu J, Liu F, Lu A, He W (2017) Enhanced photocurrent production by the synergy of hematite nanowire-arrayed photoanode and bioengineered Shewanella oneidensis MR-1. Biosens Bioelectron 94:227–234. https://doi.org/10.1016/j.bios.2017.03.006

    Article  CAS  Google Scholar 

  54. Yong X-Y, Feng J, Chen Y-L, Shi D-Y, Xu Y-S, Zhou J, Wang S-Y, Xu L, Yong Y-C, Sun Y-M, Shi C-L, OuYang P-K, Zheng T (2014) Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelectron 56:19–25. https://doi.org/10.1016/j.bios.2013.12.058

    Article  CAS  Google Scholar 

  55. Yong X-Y, Shi D-Y, Chen Y-L, Jiao F, Lin X, Zhou J, Wang S-Y, Yong Y-C, Sun Y-M, OuYang P-K, Zheng T (2014) Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour Technol 152:220–224. https://doi.org/10.1016/j.biortech.2013.10.086

    Article  CAS  Google Scholar 

  56. Schmitz S, Nies S, Wierckx N, Blank LM, Rosenbaum MA (2015) Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front Microbiol 6:284. https://doi.org/10.3389/fmicb.2015.00284

    Article  Google Scholar 

  57. Wang VB, Chua S-L, Cao B, Seviour T, Nesatyy VJ, Marsili E, Kjelleberg S, Givskov M, Tolker-Nielsen T, Song H, Loo JSC, Yang L (2013) Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in Pseudomonas aeruginosa microbial fuel cells. PLoS One 8(5):e63129. https://doi.org/10.1371/journal.pone.0063129

    Article  CAS  Google Scholar 

  58. Yong Y-C, Yu Y-Y, Li C-M, Zhong J-J, Song H (2011) Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Biosens Bioelectron 30(1):87–92. https://doi.org/10.1016/j.bios.2011.08.032

    Article  CAS  Google Scholar 

  59. Friman H, Schechter A, Nitzan Y, Cahan R (2012) Effect of external voltage on Pseudomonas putida F1 in a bio electrochemical cell using toluene as sole carbon and energy source. Microbiology 158(2):414–423. https://doi.org/10.1099/mic.0.053298-0

    Article  CAS  Google Scholar 

  60. Lai B, Yu S, Bernhardt PV, Rabaey K, Virdis B, Krömer JO (2016) Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol Biofuels 9(1):39. https://doi.org/10.1186/s13068-016-0452-y

    Article  CAS  Google Scholar 

  61. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66(8):3262–3268. https://doi.org/10.1128/aem.66.8.3262-3268.2000

    Article  CAS  Google Scholar 

  62. Zheng T, Xu Y-S, Yong X-Y, Li B, Yin D, Cheng Q-W, Yuan H-R, Yong Y-C (2015) Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells. Bioresour Technol 197:416–421. https://doi.org/10.1016/j.biortech.2015.08.136

    Article  CAS  Google Scholar 

  63. Shen H-B, Yong X-Y, Chen Y-L, Liao Z-H, Si R-W, Zhou J, Wang S-Y, Yong Y-C, OuYang P-K, Zheng T (2014) Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour Technol 167:490–494. https://doi.org/10.1016/j.biortech.2014.05.093

    Article  CAS  Google Scholar 

  64. Xu Y-S, Zheng T, Yong X-Y, Zhai D-D, Si R-W, Li B, Yu Y-Y, Yong Y-C (2016) Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Bioresour Technol 211:542–547. https://doi.org/10.1016/j.biortech.2016.03.144

    Article  CAS  Google Scholar 

  65. Dewan A, Beyenal H, Lewandowski Z (2008) Scaling up microbial fuel cells. Environ Sci Technol 42(20):7643–7648. https://doi.org/10.1021/es800775d

    Article  CAS  Google Scholar 

  66. Liu H, Cheng S, Huang L, Logan BE (2008) Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources 179(1):274–279. https://doi.org/10.1016/j.jpowsour.2007.12.120

    Article  CAS  Google Scholar 

  67. Zhai D-D, Li B, Sun J-Z, Sun D-Z, Si R-W, Yong Y-C (2016) Enhanced power production from microbial fuel cells with high cell density culture. Water Sci Technol 73(9):2176–2181. https://doi.org/10.2166/wst.2016.059

    Article  CAS  Google Scholar 

  68. Yong X-Y, Yan Z-Y, Shen H-B, Zhou J, Wu X-Y, Zhang L-J, Zheng T, Jiang M, Wei P, Jia H-H, Yong Y-C (2017) An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Bioresour Technol 241:1191–1196. https://doi.org/10.1016/j.biortech.2017.06.050

    Article  CAS  Google Scholar 

  69. Raghavulu SV, Mohan SV, Goud RK, Sarma PN (2009) Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11(2):371–375. https://doi.org/10.1016/j.elecom.2008.11.038

    Article  CAS  Google Scholar 

  70. He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74(1):78–82. https://doi.org/10.1016/j.bioelechem.2008.07.007

    Article  CAS  Google Scholar 

  71. Hartshorne RS, Jepson BN, Clarke TA, Field SJ, Fredrickson J, Zachara J, Shi L, Butt JN, Richardson DJ (2007) Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. JBIC J Biol Inorg Chem 12(7):1083–1094. https://doi.org/10.1007/s00775-007-0278-y

    Article  CAS  Google Scholar 

  72. Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH (2014) Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 4:5628. https://doi.org/10.1038/srep05628

    Article  CAS  Google Scholar 

  73. Yong Y-C, Cai Z, Yu Y-Y, Chen P, Jiang R, Cao B, Sun J-Z, Wang J-Y, Song H (2013) Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. Bioresour Technol 130:763–768. https://doi.org/10.1016/j.biortech.2012.11.145

    Article  CAS  Google Scholar 

  74. Zhuang L, Zhou S, Li Y, Yuan Y (2010) Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour Technol 101(10):3514–3519. https://doi.org/10.1016/j.biortech.2009.12.105

    Article  CAS  Google Scholar 

  75. Yuan Y, Zhao B, Zhou S, Zhong S, Zhuang L (2011) Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresour Technol 102(13):6887–6891. https://doi.org/10.1016/j.biortech.2011.04.008

    Article  CAS  Google Scholar 

  76. Sasaki D, Sasaki K, Tsuge Y, Kondo A (2016) Comparative metabolic state of microflora on the surface of the anode electrode in a microbial fuel cell operated at different pH conditions. AMB Express 6(1):125. https://doi.org/10.1186/s13568-016-0299-4

    Article  CAS  Google Scholar 

  77. Alagappan G, Cowan RM (2004) Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere 54:1255–1265. https://doi.org/10.1016/j.chemosphere.2003.09.013

    Article  CAS  Google Scholar 

  78. Yong Y-C, Wu X-Y, Sun J-Z, Cao Y-X, Song H (2015) Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere 140:18–25. https://doi.org/10.1016/j.chemosphere.2014.10.020

    Article  CAS  Google Scholar 

  79. Yong Y-C, Zhong J-J (2013) Impacts of quorum sensing on microbial metabolism and human health. In: Zhong J-J (ed) Future trends in biotechnology. Springer, Berlin/Heidelberg, pp 25–61. https://doi.org/10.1007/10_2012_138

    Chapter  Google Scholar 

  80. TerAvest MA, Ajo-Franklin CM (2016) Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng 113(4):687–697. https://doi.org/10.1002/bit.25723

    Article  CAS  Google Scholar 

  81. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin aS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123. https://doi.org/10.1038/nbt749

    Article  CAS  Google Scholar 

  82. Jensen HM, TerAvest MA, Kokish MG, Ajo-Franklin CM (2016) CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth Biol 5(7):679–688. https://doi.org/10.1021/acssynbio.5b00279

    Article  CAS  Google Scholar 

  83. Tschirhart T, Kim E, McKay R, Ueda H, Wu H-C, Pottash AE, Zargar A, Negrete A, Shiloach J, Payne GF, Bentley WE (2017) Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat Commun 8:14030. https://doi.org/10.1038/ncomms14030

    Article  CAS  Google Scholar 

  84. Schuergers N, Werlang C, Ajo-Franklin CM, Boghossian AA (2017) A synthetic biology approach to engineering living photovoltaics. Energy Environ Sci 10(5):1102–1115. https://doi.org/10.1039/C7EE00282C

    Article  CAS  Google Scholar 

  85. Cao Y, Li X, Li F, Song H (2017) CRISPRi–sRNA: transcriptional–translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synth Biol 6(9):1679–1690. https://doi.org/10.1021/acssynbio.6b00374

    Article  CAS  Google Scholar 

  86. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76(13):4123–4129. https://doi.org/10.1128/aem.02425-09

    Article  CAS  Google Scholar 

  87. Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R, Sun J, Schilling CH, Lovley DR (2008) Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10(5):267–275. https://doi.org/10.1016/j.ymben.2008.06.005

    Article  CAS  Google Scholar 

  88. Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H (2015) Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 4(7):815–823. https://doi.org/10.1021/sb500331x

    Article  CAS  Google Scholar 

  89. Kouzuma A, Meng XY, Kimura N, Hashimoto K, Watanabe K (2010) Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol 76:4151–4157. https://doi.org/10.1128/aem.00117-10

    Article  CAS  Google Scholar 

  90. Liu T, Yu Y-Y, Deng X-P, Ng CK, Cao B, Wang J-Y, Rice SA, Kjelleberg S, Song H (2015) Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol Bioeng 112(10):2051–2059. https://doi.org/10.1002/bit.25624

    Article  CAS  Google Scholar 

  91. Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR (2013) Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ Sci 6(6):1901–1908. https://doi.org/10.1039/C3EE40441B

    Article  CAS  Google Scholar 

  92. Kane AL, Bond DR, Gralnick JA (2013) Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth Biol 2(2):93–101. https://doi.org/10.1021/sb300042w

    Article  CAS  Google Scholar 

  93. Jensen HM, Albers AE, Malley KR, Londer YY, Cohen BE, Helms BA, Weigele P, Groves JT, Ajo-Franklin CM (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci U S A 107(45):19213–19218. https://doi.org/10.1073/pnas.1009645107

    Article  Google Scholar 

  94. Yong Y-C, Yu Y-Y, Yang Y, Liu J, Wang J-Y, Song H (2013) Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Biotechnol Bioeng 110(2):408–416. https://doi.org/10.1002/bit.24732

    Article  CAS  Google Scholar 

  95. Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE (2003) Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J Biol Chem 278(30):27758–27765. https://doi.org/10.1074/jbc.M302582200

    Article  CAS  Google Scholar 

  96. Gescher JS, Cordova CD, Spormann AM (2008) Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 68(3):706–719. https://doi.org/10.1111/j.1365-2958.2008.06183.x

    Article  CAS  Google Scholar 

  97. Goldbeck CP, Jensen HM, TerAvest MA, Beedle N, Appling Y, Hepler M, Cambray G, Mutalik V, Angenent LT, Ajo-Franklin CM (2013) Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth Biol 2(3):150–159. https://doi.org/10.1021/sb300119v

    Article  CAS  Google Scholar 

  98. TerAvest MA, Zajdel TJ, Ajo-Franklin CM (2014) The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 1(11):1874–1879. https://doi.org/10.1002/celc.201402194

    Article  CAS  Google Scholar 

  99. Sturm-Richter K, Golitsch F, Sturm G, Kipf E, Dittrich A, Beblawy S, Kerzenmacher S, Gescher J (2015) Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol 186:89–96. https://doi.org/10.1016/j.biortech.2015.02.116

    Article  CAS  Google Scholar 

  100. Chen J, Deng F, Hu Y, Sun J, Yang Y (2015) Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell. J Power Sources 290:80–86. https://doi.org/10.1016/j.jpowsour.2015.03.033

    Article  CAS  Google Scholar 

  101. Chen J, Hu Y, Huang W, Zhang L (2017) Enhanced electricity generation for biocathode microbial fuel cell by in situ microbial-induced reduction of graphene oxide and polarity reversion. Int J Hydrog Energy 42(17):12574–12582. https://doi.org/10.1016/j.ijhydene.2017.03.012

    Article  CAS  Google Scholar 

  102. Chen J, Hu Y, Tan X, Zhang L, Huang W, Sun J (2017) Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode. Bioresour Technol 241:735–742. https://doi.org/10.1016/j.biortech.2017.06.020

    Article  CAS  Google Scholar 

  103. Chen J, Zhang L, Hu Y, Huang W, Niu Z, Sun J (2017) Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell. Bioresour Technol 241:220–227. https://doi.org/10.1016/j.biortech.2017.05.123

    Article  CAS  Google Scholar 

  104. Lv Y, Zhang Z, Chen Y, Hu Y (2016) A novel three-stage hybrid nano bimetallic reduction/oxidation/biodegradation treatment for remediation of 2,2′4,4′-tetrabromodiphenyl ether. Chem Eng J 289:382–390. https://doi.org/10.1016/j.cej.2015.12.097

    Article  CAS  Google Scholar 

  105. Yang X, Ma X, Wang K, Wu D, Lei Z, Feng C (2016) Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim Acta 210:846–853. https://doi.org/10.1016/j.electacta.2016.05.215

    Article  CAS  Google Scholar 

  106. Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen S, Tong Y, Li Y (2013) High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 5(21):10283–10290. https://doi.org/10.1039/C3NR03487A

    Article  CAS  Google Scholar 

  107. Li J, Guo C, Liao C, Zhang M, Liang X, Lu G, Yang C, Dang Z (2016) A bio-hybrid material for adsorption and degradation of phenanthrene: bacteria immobilized on sawdust coated with a silica layer. RSC Adv 6(109):107189–107199. https://doi.org/10.1039/C6RA22683C

    Article  CAS  Google Scholar 

  108. Yu Y-Y, Chen H-l, Yong Y-C, Kim D-H, Song H (2011) Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Chem Commun 47(48):12825–12827. https://doi.org/10.1039/C1CC15874K

    Article  CAS  Google Scholar 

  109. Yong Y-C, Liao Z-H, Sun J-Z, Zheng T, Jiang R-R, Song H (2013) Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1. Process Biochem 48(12):1947–1951. https://doi.org/10.1016/j.procbio.2013.09.008

    Article  CAS  Google Scholar 

  110. Yan F-F, He Y-R, Wu C, Cheng Y-Y, Li W-W, Yu H-Q (2014) Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1. Environ Sci Technol Lett 1(1):128–132. https://doi.org/10.1021/ez4000093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC 51578266, 51708254, 21706105), Natural Science Foundation of Jiangsu Province (BK20160015, BK20170545), Fok Ying-Tong Education Foundation (grant no., 161074), National Postdoctoral Program for Innovative Talents (BX20180131), and a project funded by the Priority Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Chun Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, Z., Moradian, J.M., Wang, YZ., Yu, YY., Liu, X., Yong, YC. (2019). Bioengineering of Bacterial Extracellular Electron Transfer Towards Sustainable Wastewater Treatment. In: Wang, AJ., Liang, B., Li, ZL., Cheng, HY. (eds) Bioelectrochemistry Stimulated Environmental Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-8542-0_1

Download citation

Publish with us

Policies and ethics