Advertisement

Aspects Involved in the Modeling of PV System, Comparison of MPPT Schemes, and Study of Different Ambient Conditions Using P&O Method

  • Mohammed Aslam Husain
  • Asif Khan
  • Abu Tariq
  • Zeeshan Ahmad Khan
  • Abhinandan Jain
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 732)

Abstract

Discussion of almost all major aspects involved in the study and design of a solar photovoltaic (PV) stand-alone system has been incorporated in this paper. Detailed modeling of a photovoltaic cell and maximum power point tracker in MATLAB/Simulink environment has been shown. Initially, the precise model of a solar cell is made in Simulink, and then, how a solar module, array, and panel are obtained using that cell is shown clearly. All the existing methods for maximum power point method of solar PV power have been tabulated, and a comparative table is included in this article. Finally, a detailed study of the PV system with perturbation and observation MPPT method has been done.

Keywords

SPV array Insolation MPPT P&O MATLAB simulation 

References

  1. 1.
    Ramaprabha, R.: Ph.D. Thesis. Maximum energy extraction from solar photovoltaic array under partial shaded conditions, Faculty of Electrical Engineering, Anna University, Chennai (2011)Google Scholar
  2. 2.
    Rauschenbusch, H.S.: Solar Cell Array Design Handbook. Van Nostrand Reinhold (1980)Google Scholar
  3. 3.
    Husain, M.A., Tariq, A.: Modeling of a standalone wind-PV hybrid generation system using matlab/SIMULINK and its performance analysis. Int. J. Sci. Eng. Res. 4(11) (2013)Google Scholar
  4. 4.
    Faridi, S.N.H., Husain, M.A., Tariq, A., Khair, A.: MATLAB based modeling of a PV array and its comparative study with actual system for different conditions. Int. J. Electr. Eng. Technol. 5(5), 19–27 (2014)Google Scholar
  5. 5.
    Husain, M.A., Tariq, A.: Modeling and study of a standalone PMSG wind generation system using MATLAB/SIMULINK. Univers. J. Electr. Electron. Eng. 2(7), 270–277 (2014).  https://doi.org/10.13189/ujeee.2014.020702
  6. 6.
    Husain, M.A., Jalil, M.F., Beg, M.T.S., Naseem, M., Tariq, A.: Modeling and study of a standalone PV system using Matlab/Simulink. i-Manager’s J. Electr. Eng. 5(4) (2012)Google Scholar
  7. 7.
    Pongratananukul, N., Kasparis, T.: Tool for automated simulation of solar arrays using general-purpose simulators. In: Proceedings of IEEE Workshop on Computers in Power Electronics, pp. 10–14 (2004)Google Scholar
  8. 8.
    Gow, J.A., Manning, C.D.: Development of a model for photovoltaic arrays suitable for use in simulation studies of solar energy conversion systems. In: Proceedings of 6th International Conference on Power Electronics and Variable Speed Drives, pp. 69–74 (1996)Google Scholar
  9. 9.
    Chowdhury, S., Taylor, G.A., Chowdhury, S.P., Saha, A.K., Song, Y.H.: Modelling, simulation and performance analysis of a PV array in an embedded environment. In: Proceedings of 42nd International Universities Power Engineering Conference, UPEC, pp. 781–785 (2007)Google Scholar
  10. 10.
    Hyvarinen J., Karila, J.: New analysis method for crystalline silicon cells. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 1521–1524 (2003)Google Scholar
  11. 11.
    Nishioka, K., Sakitani, N., Uraoka, Y., Fuyuki, T.: Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Sol. Energy Mater. Sol. Cells 91(13), 1222–1227 (2007)CrossRefGoogle Scholar
  12. 12.
    Carrero, C., Amador, J., Arnaltes, S.: A single procedure for helping PV designers to select silicon PV module and evaluate the loss resistances. Renew Energy (2007)Google Scholar
  13. 13.
    Koutroulis, E., Kalaitzakis, K., Tzitzilonis, V.: Development of a FPGA-based system for real-time simulation of photovoltaic modules. Microelectron. J. (2008)Google Scholar
  14. 14.
    Walker, G.: Evaluating MPPT converter topologies using a matlab PV model. J. Electr. Electron. Eng. Aust. 21(1) (2001)Google Scholar
  15. 15.
    De Soto, W., Klein, S.A., Beckman, W.A.: Improvement and validation of a model for photovoltaic array performance. Sol. Energy 80(1), 78–88 (2006)CrossRefGoogle Scholar
  16. 16.
    Glass, M.C.: Improved solar array power point model with SPICE realization. In: Proceedings of 31st Intersociety Energy Conversion Engineering Conference (IECEC), vol. 1, pp. 286–291 (1996)Google Scholar
  17. 17.
    Kuo, Y.C., Liang, T.J., Chen, J.F.: Novel maximum-power-point tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron. 48(3), 594–601 (2001)CrossRefGoogle Scholar
  18. 18.
    Elhagry, M.T., Elkousy, A.A.T., Saleh, M.B., Elshatter, T.F., Abou-Elzahab, E.M.: Fuzzy modeling of photovoltaic panel equivalent circuit. In: Proceedings of 40th Midwest Symposium on Circuits and Systems, vol. 1, pp. 60–63, Aug 1997Google Scholar
  19. 19.
    Manimekalai, P., Harikumar, R., Aiswarya, R.: An overview of converters for photo voltaic power generating systems. In: International Conference on Advances in Communication and Computing Technologies (ICACACT) (2012)Google Scholar
  20. 20.
    Parisi, A., Curcio, L., Rocca, V., Stivala, S., Cino, A.C., Busacca, A.C., Cipriani, G., La Cascia, D., Di Dio, V., Miceli, R.: Photovoltaic module characteristics from CIGS solar cell modelling. In: Proceedings of International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1139–1144 (2013)Google Scholar
  21. 21.
    Guerrero, J.M., Blaabjerg, F., Zhelev, T., Hemmes, K., Monmasson, E., Jemei, S., Comech, M.P., Granadino, R., Frau, J.I.: Distributed generation: toward a new energy paradigm. IEEE Ind. Electron. Mag. 4(1), 52–64 (2010)CrossRefGoogle Scholar
  22. 22.
    Xiao, W., Ozog, N., Dunford, W.G.: Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Ind. Electron. 54(3) (2007)CrossRefGoogle Scholar
  23. 23.
    Katiraei, F., Agüero, J.R.: Solar PV integration challenges. IEEE Power Energy Mag. 9(3), 62–71 (2011)CrossRefGoogle Scholar
  24. 24.
    Patel, H., Agarwal, V.: MPPT scheme for a PV-fed single-phase single-stage grid-connected inverter operating in CCM with only one current sensor. IEEE Trans. Energy Convers. 24(1) (2009)CrossRefGoogle Scholar
  25. 25.
    Subudhi, B., Pradhan, R.: A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 4(1), 89–98 (2013)CrossRefGoogle Scholar
  26. 26.
    Zainudin, H.N., Mekhilef, S.: Comparison study of maximum power point tracker techniques for PV systems. In: Proceedings of 14th International Middle East Power Systems Conference, Egypt, 19–21 Dec 2010Google Scholar
  27. 27.
    Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mohammed Aslam Husain
    • 1
  • Asif Khan
    • 2
  • Abu Tariq
    • 3
  • Zeeshan Ahmad Khan
    • 3
  • Abhinandan Jain
    • 4
  1. 1.Department of Electrical EngineeringRECAmbedkar NagarIndia
  2. 2.Department of Electrical EngineeringAligarh Muslim University (AMU)AligarhIndia
  3. 3.University of Electronic Science and Technology of ChinaChengduChina
  4. 4.Department of Electronics EngineeringAligarh Muslim University (AMU)AligarhIndia

Personalised recommendations