Skip to main content

Thermomechanical Simulation of Friction Stir Welding Process Using Lagrangian Method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

Friction stir welding (FSW) is a solid-state joining process. Modeling of FSW process provides insight into the mechanism of the process in terms of heat generation, material flow, etc. In the present chapter, modeling of FSW process in DEFORM-3D using Lagrangian method is discussed. Various governing equations involved in the finite element modeling of FSW are explained. Three different solvers, viz., conjugate gradient, sparse, and combination of the two, are compared based on computation time and accuracy of the solution. The developed method is validated with the experimental force and torque. The model is further used to study the temperature distribution and material flow. The latter is studied using particle tracking method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( A_{iN} \) :

Area contribution of ith element to the node N

\( B_{\text{s}} \) :

Strain rate matrix

\( C \) :

Heat capacity matrix

\( D \) :

Effective strain rate coefficient matrix

\( {\text{E}}\left( {{\dot{\varepsilon }}_{ij} } \right) \) :

Work function

\( F_{i} \) :

Traction

\( J_{\text{b}} \) :

Jacobian matrix

\( K \) :

Thermal conductivity

\( K_{\text{s}} \) :

Global stiffness matrix

\( K_{\text{wt}} \) :

Thermal conductance between the workpiece and tool

\( K_{\text{c}} \) :

Heat conduction matrix

\( K_{\text{wb}} \) :

Thermal conductance between the workpiece and backing plate

\( N^{\text{T}} \) :

Transpose of shape function matrix

\( Q \) :

Heat flux vector

\( Q_{\text{wa}} \) :

Heat transfer between the workpiece and ambient

\( Q_{\text{wt}} \) :

Heat transfer between the workpiece and tool

\( Q_{\text{wb}} \) :

Heat transfer between the workpiece and backing plate

\( S_{F} \) :

Traction surface

\( T_{\text{t}} \) :

Tool temperature

\( T_{\text{b}} \) :

Backing plate temperature

\( T_{\text{w}} \) :

Workpiece temperature

\( T_{\text{a}} \) :

Ambient temperature

c :

Specific heat capacity

\( f_{\text{R}} \) :

Residual nodal point force

\( f \) :

Yield function

\( g \) :

Plastic potential

\( h_{\text{a}} \) :

Convective heat transfer between the workpiece/tool and ambient

\( h_{\text{wt}} \) :

Convective heat transfer between the workpiece and tool

\( h_{\text{wb}} \) :

Convective heat transfer between the workpiece and backing plate

\( J_{2} ,J_{3} \) :

Second and third variant of stress tensor

\( k \) :

Material constant

\( k_{\text{s}} \) :

Static yield stress in shear

\( m \) :

Shear factor

\( q_{N} \) :

Shape function of element i at node N

\( q_{\alpha } \) :

Element shape function

\( \dot{q} \) :

Heat generation rate

\( q_{f} \) :

Surface heat flux due to friction

\( u_{i}^{\alpha } \) :

Velocity component at the αth node

\( u_{i} \) :

Velocity component

\( v \) :

Nodal velocity

\( v_{\text{s}} \) :

Sliding velocity at the interface of tool workpiece

\( x, y, z \) :

Cartesian coordinate system

\( V^{{\prime \prime }} \) :

Viscosity constant

\( \sigma_{\text{b}} \) :

Stefan–Boltzmann constant

\( \varepsilon_{\text{b}} \) :

Emissivity

\( \sigma_{ij}^{{\prime }} \) :

Deviatoric stress

\( \sigma_{ij} \) :

Cauchy stress

\( \delta_{ij} \) :

Kronecker delta

\( \sigma_{m} \) :

Hydrostatic stress

\( \sigma_{Y} \) :

Yield stress

\( \varepsilon_{ij}^{p} \) :

Plastic strain

\( \lambda \) :

Positive proportionality constant

\( \dot{\gamma }_{xy}^{{}} \) :

Shear strain rate

\( \tau_{xy} \) :

Shear stress

\( \dot{\varepsilon }_{x} \) :

Strain rate in x-direction

\( \dot{\bar{\varepsilon }} \) :

Effective strain rate

\( \bar{\sigma } \) :

Effective stress or flow stress

\( \dot{\varepsilon }_{ij} \) :

Strain rate component

\( \bar{\tau } \) :

Contact stress

\( \tau_{ \hbox{max} } \) :

Shear yield strength

\( \lambda_{\text{P}} \) :

Penalty constant

\( \dot{\varepsilon }_{\text{v}} \) :

Volumetric strain rate

\( \dot{\bar{\varepsilon }}_{0} \) :

Limiting strain rate

\( \bar{\varepsilon }_{N} \) :

Effective strain rate at node N

\( \xi ,\eta ,\zeta \) :

Natural coordinate system

\( \varphi \) :

Inelastic heat fraction

\( \psi \) :

Constant

\( \rho \) :

Density

References

  1. Munoz, A. C., Ruckert, G., Huneau, B., Sauvage, X., & Marya, S. (2008). Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy. Journal of Materials Processing Technology, 197(1–3), 337–343.

    Article  Google Scholar 

  2. Jain, R., Kumari, K., Kesharwani, R. K., Kumar, S., Pal, S. K., Singh, S. B., et al. (2015). Friction stir welding: Scope and recent developement. In P. J. Davim (Ed.), Mordern manufacturing engineering (pp. 179–228). Swizerland: Springer International Publishing.

    Chapter  Google Scholar 

  3. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple Smith, P., & Dawes, C. J. (1991). International patent number PCT/GB92/02203 and GB patent application number 9125978.9.

    Google Scholar 

  4. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1–2), 1–78.

    Article  Google Scholar 

  5. Nandan, R., Debroy, T., & Bhadeshia, H. (2008). Recent advances in friction-stir welding—Process, weldment structure and properties. Progress in Materials Science, 53(6), 980–1023.

    Article  Google Scholar 

  6. Khandkar, M. Z. H., Khan, J. A., & Reynolds, A. P. (2003). Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Science and Technology of Welding and Joining, 8(3), 165–174.

    Article  Google Scholar 

  7. Song, M., & Kovacevic, R. (2003). Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of Machine Tools and Manufacture, 43(6), 605–615.

    Article  Google Scholar 

  8. Mandal, S., & Williamson, K. (2006). A thermomechanical hot channel approach for friction stir welding. Journal of Materials Processing Technology, 174, 190–194.

    Article  Google Scholar 

  9. Song, M., & Kovacevic, R. (2004). Heat transfer modelling for both workpiece and tool in the friction stir welding process: A coupled model. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(1), 17–33.

    Article  Google Scholar 

  10. Schmidt, H., Hattel, J., & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 12, 143–157.

    Article  Google Scholar 

  11. Schmidt, H. B., & Hattel, J. H. (2008). Thermal modelling of friction stir welding. Scripta Materialia, 58(5), 332–337.

    Article  Google Scholar 

  12. Heurtier, P., Jones, M. J., Desrayaud, C., Driver, J. H., Montheillet, F., & Allehaux, D. (2006). Mechanical and thermal modelling of Friction stir welding. Journal of Materials Processing Technology, 171, 348–357.

    Article  Google Scholar 

  13. Chao, Y. J., Liu, S., & Chien, C. (2008). Friction stir welding of al 6061–T6 thick plates: Part II—numerical modeling of the thermal and heat transfer phenomena. Journal of the Chinese Institute of Engineers, 31(5), 769–779.

    Article  Google Scholar 

  14. Tufaro, L. N., Manzoni, I., & Svoboda, H. G. (2015). Effect of heat input on AA5052 friction stir welds characteristics. Procedia Materials Science, 8, 914–923.

    Article  Google Scholar 

  15. Biswas, P., & Mandal, N. R. (2011). Effect of tool geometries on thermal history of FSW of AA1100. Welding Journal, 90(July), 129–135.

    Google Scholar 

  16. Contuzzi, N., Campanelli, S. L., Casalino, G., & Ludovico, A. D. (2016). On the role of the thermal contact conductance during the friction stir welding of an AA5754-H111 butt joint. Applied Thermal Engineering, 104, 263–273.

    Article  Google Scholar 

  17. Donea, J., Huerta, A., Ponthot, J., & Rodr, A. (1999). Arbitrary Lagrangian–Eulerian methods. Wiley, New York.

    Google Scholar 

  18. Bathe, K.-J. (2006). Finite element procedures (2nd ed.). United States of America: Prentice Hall, Pearson Education.

    MATH  Google Scholar 

  19. Priyadarshini, A., Pal, S. K., & Samantaray, A. K. (2012). Finite element modeling of chip formation in orthogonal machining. In P. J. Davim (Ed.), Statistical and computational techniques in manufacturing (pp. 101–144). Berlin: Springer.

    Chapter  Google Scholar 

  20. Xu, S., Deng, X., Reynolds, A. P., & Seidel, T. U. (2001). Finite element simulation of material flow in friction stir welding. Science and Technology of Welding and Joining, 6(3), 191–193.

    Article  Google Scholar 

  21. Ulysse, P. (2002). Three-dimensional modeling of the friction stir-welding process. International Journal of Machine Tools and Manufacture, 42, 1549–1557.

    Article  Google Scholar 

  22. Chen, C. M., & Kovacevic, R. (2003). Finite element modeling of friction stir welding—thermal and thermomechanical analysis. International Journal of Machine Tools and Manufacture, 43(13), 1319–1326.

    Article  Google Scholar 

  23. Chen, C., & Kovacevic, R. (2004). Thermomechanical modelling and force analysis of friction stir welding by the finite element method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering, 218(5), 509–519.

    Article  Google Scholar 

  24. Chen, C. M., & Kovacevic, R. (2006). Parametric finite element analysis of stress evolution during friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(8), 1359–1371.

    Article  Google Scholar 

  25. Soundararajan, V., Zekovic, S., & Kovacevic, R. (2005). Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. International Journal of Machine Tools and Manufacture, 45(14), 1577–1587.

    Article  Google Scholar 

  26. Buffa, G., Hua, J., Shivpuri, R., & Fratini, L. (2006). A continuum based fem model for friction stir welding—model development. Materials Science and Engineering A, 419(1–2), 389–396.

    Article  Google Scholar 

  27. Buffa, G., Hua, J., Shivpuri, R., & Fratini, L. (2006). Design of the friction stir welding tool using the continuum based FEM model. Materials Science and Engineering A, 419(1–2), 381–388.

    Article  Google Scholar 

  28. Buffa, G., Fratini, L., & Shivpuri, R. (2007). CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: Analytical approaches. Journal of Materials Processing Technology, 191(1–3), 356–359.

    Article  Google Scholar 

  29. Fratini, L., & Buffa, G. (2005). CDRX modelling in friction stir welding of aluminium alloys. International Journal of Machine Tools and Manufacture, 45(10), 1188–1194.

    Article  Google Scholar 

  30. Fratini, L., Buffa, G., & Shivpuri, R. (2007). Improving friction stir welding of blanks of different thicknesses. Materials Science and Engineering A, 459(1–2), 209–215.

    Article  Google Scholar 

  31. Buffa, G., Fratini, L., & Shivpuri, R. (2008). Finite element studies on friction stir welding processes of tailored blanks. Computers & Structures, 86(1–2), 181–189.

    Article  Google Scholar 

  32. Fratini, L., Buffa, G., Palmeri, D., Hua, J., & Shivpuri, R. (2006). Material flow in FSW of AA7075–T6 butt joints: Numerical simulations and experimental verifications. Science and Technology of Welding and Joining, 11(4), 412–421.

    Article  Google Scholar 

  33. Simar, A., Pardoen, T., & de Meester, B. (2007). Effect of rotational material flow on temperature distribution in friction stir welds. Science and Technology of Welding and Joining, 12(4), 324–333.

    Article  Google Scholar 

  34. Simar, A., Lecomte-Beckers, J., Pardoen, T., & de Meester, B. (2006). Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding. Science and technology of welding and joining, 11(2), 170–177.

    Article  Google Scholar 

  35. Asadi, P., Mahdavinejad, R. A., & Tutunchilar, S. (2011). Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Materials Science and Engineering A, 528(21), 6469–6477.

    Article  Google Scholar 

  36. Tutunchilar, S., Haghpanahi, M., Besharati Givi, M. K., Asadi, P., & Bahemmat, P. (2012). Simulation of material flow in friction stir processing of a cast Al-Si alloy. Materials and Design, 40, 415–426.

    Article  Google Scholar 

  37. Pashazadeh, H., Masoumi, A., & Teimournezhad, J. (2013). A study on material flow pattern in friction stir welding using finite element method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(10), 1453–1466.

    Article  Google Scholar 

  38. Pashazadeh, H., Teimournezhad, J., & Masoumi, A. (2014). Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Materials and Design, 55, 619–632.

    Article  Google Scholar 

  39. Gok, K., & Aydin, M. (2013). Investigations of friction stir welding process using finite element method. International Journal of Advanced Manufacturing Technology, 68(1–4), 775–780.

    Article  Google Scholar 

  40. Trimble, D., Monaghan, J., & O’Donnell, G. E. (2012). Force generation during friction stir welding of AA2024-T3. CIRP Annals-Manufacturing Technology, 61(1), 9–12.

    Article  Google Scholar 

  41. Marzbanrad, J., Akbari, M., Asadi, P., & Safaee, S. (2014). Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metallurgical and Materials Transactions B Process Metallurgy Materials Processing Science, 45(5), 1887–1894.

    Article  Google Scholar 

  42. Zhang, P., Guo, N., Chen, G., Meng, Q., Dong, C., Zhou, L., et al. (2014). Plastic deformation behavior of the friction stir welded AA2024 aluminum alloy. International Journal of Advanced Manufacturing Technology, 74(5), 673–679.

    Article  Google Scholar 

  43. Shojaeefard, M. H., Khalkhali, A., Akbari, M., & Asadi, P.: Investigation of friction stir welding tool parameters using FEM and neural network. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 229(3), 209–217.

    Article  Google Scholar 

  44. Zhao, Y., Liu, H., Yang, T., Lin, Z., & Hu, Y. (2015). Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy. International Journal of Advanced Manufacturing Technology, 83(9), 1467–1475.

    Google Scholar 

  45. Asadi, P., Besharati Givi, M. K., & Akbari, M. (2015). Microstructural simulation of friction stir welding using a cellular automaton method: a microstructure prediction of AZ91 magnesium alloy. International Journal of Mechanical and Materials Engineering, 10(1), 20.

    Google Scholar 

  46. Asadi, P., Besharati Givi, M. K., Akbari, M. (2015). Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. The International Journal of Advanced Manufacturing Technology, 83(1), 301–311.

    Article  Google Scholar 

  47. Wan, Z. Y., Zhang, Z., & Zhou, X. (2016). Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6. International Journal of Advanced Manufacturing Technology, 90(9), 3567–3574.

    Google Scholar 

  48. Seidel, T. U., & Reynolds, A. P. (2003). Two-dimensional friction stir welding process model based on fluid mechanics. Science and Technology of Welding and Joining, 8(3), 175–183.

    Article  Google Scholar 

  49. Colegrove, P. A., & Shercliff, H. R. (2004). Development of Trivex friction stir welding tool Part 1—two-dimensional flow modelling and experimental validation. Science and Technology of Welding and Joining, 9(4), 352–361.

    Article  Google Scholar 

  50. Colegrove, P. A., & Shercliff, H. R. (2004). Development of Trivex friction stir welding tool Part 2—three-dimensional flow modelling. Science and Technology of Welding and Joining, 9(4), 352–361.

    Article  Google Scholar 

  51. Colegrove, P. A., & Shercliff, H. R. (2005). 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. Journal of Materials Processing Technology, 169, 320–327.

    Article  Google Scholar 

  52. Nandan, R., Roy, G. G., Debroy, T., & Introduction, I. (2006). Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37(4), 1247–1259.

    Article  Google Scholar 

  53. Nandan, R., Roy, G. G., Lienert, T. J., & Debroy, T. (2007). Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Materialia, 55(3), 883–895.

    Article  Google Scholar 

  54. Arora, A., Nandan, R., Reynolds, A. P., & DebRoy, T. (2009). Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Materialia, 60, 13–16.

    Article  Google Scholar 

  55. Arora, A., Zhang, Z., De, A., & DebRoy, T. (2009). Strains and strain rates during friction stir welding. Scripta Materialia, 61(9), 863–866.

    Article  Google Scholar 

  56. Arora, A., De, A., & Debroy, T. (2011). Toward optimum friction stir welding tool shoulder diameter. Scripta Materialia, 64(1), 9–12.

    Article  Google Scholar 

  57. Arora, A., Mehta, M., De, A., & DebRoy, T. (2011). Load bearing capacity of tool pin during friction stir welding. International Journal of Advanced Manufacturing Technology, 61(9–12), 911–920.

    Google Scholar 

  58. Liechty, B. C., & Webb, B. W. (2008). Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools and Manufacture, 48(12–13), 1474–1485.

    Article  Google Scholar 

  59. Kim, D., Badarinarayan, H., Kim, J. H., Kim, C., Okamoto, K., Wagoner, R. H., et al. (2010). Numerical simulation of friction stir butt welding process for AA5083-H18 sheets. European Journal of Mechanics-A/Solids, 29(2), 204–215.

    Article  Google Scholar 

  60. Wu, C., Zhang, W., Shi, L., & Chen, M. (2012). Visualization and simulation of plastic material flow in friction stir welding of 2024 aluminium alloy plates. Transactions of the Nonferrous Metals Society of China, 22(6), 1445–1451.

    Article  Google Scholar 

  61. Chen, G., Shi, Q., Li, Y., Sun, Y., Dai, Q., Jia, J., et al. (2013). Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy. Computational Materials Science, 79, 540–546.

    Article  Google Scholar 

  62. Mohanty, H., Mahapatra, M. M., Kumar, P., Biswas, P., & Mandal, N. R. (2012). Study on the effect of tool profiles on temperature distribution and material flow characteristics in friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(9), 1527–1535.

    Article  Google Scholar 

  63. Zhang, J., Shen, Y., Li, B., Xu, H., Yao, X., Kuang, B., et al. (2014). Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. Materials and Design, 60, 94–101.

    Article  Google Scholar 

  64. Shi, L., Wu, C. S., & Liu, H. J. (2015). The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. International Journal of Machine Tools and Manufacture, 91, 1–11.

    Article  Google Scholar 

  65. Tang, J., & Shen, Y. (2016). Numerical simulation and experimental investigation of friction stir lap welding between aluminum alloys AA2024 and AA7075. Journal of Alloys and Compounds, 666, 493–500.

    Article  Google Scholar 

  66. Al-moussawi, M., Smith, A. J., Young, A., Cater, S., & Faraji, M. (2017). Modelling of friction stir welding of DH36 steel. The International Journal of Advanced Manufacturing Technology.

    Google Scholar 

  67. Su, H., Wu, C. S., Pittner, A., & Rethmeier, M. (2014). Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy, 77, 720–731.

    Article  Google Scholar 

  68. Ji, S. D., Shi, Q. Y., Zhang, L. G., Zou, A. L., Gao, S. S., & Zan, L. V. (2012). Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry. Computational Materials Science, 63, 218–226.

    Article  Google Scholar 

  69. Su, H., Wu, C. S., Bachmann, M., & Rethmeier, M. (2015). Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding. Materials and Design, 77, 114–125.

    Article  Google Scholar 

  70. Kadian, A. K., & Biswas, P. (2017). Effect of tool pin profile on the material flow characteristics of AA6061. Journal of Manufacturing Processes, 26, 382–392.

    Article  Google Scholar 

  71. Kuykendall, K., Nelson, T., & Sorensen, C. (2013). On the selection of constitutive laws used in modeling friction stir welding. International Journal of Machine Tools and Manufacture, 74, 74–85.

    Article  Google Scholar 

  72. Zhu, Y., Chen, G., Chen, Q., Zhang, G., & Shi, Q. (2016). Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect. Materials and Design, 108(July), 400–410.

    Article  Google Scholar 

  73. Shi, L., & Wu, C. S. (2017). Transient model of heat transfer and material flow at different stages of friction stir welding process. Journal of Manufacturing Processes, 25, 323–339.

    Article  Google Scholar 

  74. Deng, X., & Xu, S. (2004). Two-dimensional finite element simulation of material flow in the friction stir welding process. Journal of Manufacturing Processes, 6(2), 125–133.

    Article  Google Scholar 

  75. Schmidt, H., & Hattel, J. (2005). A local model for the thermomechanical conditions in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 13(1), 77–93.

    Article  Google Scholar 

  76. Guerdoux, S., & Fourment, L. (2009). A 3D numerical simulation of different phases of friction stir welding. Modelling and Simulation in Materials, 17(7), 75001.

    Article  Google Scholar 

  77. Zhang, Z., & Zhang, H. W. (2008). A fully coupled thermo-mechanical model of friction stir welding. International Journal of Advanced Manufacturing Technology, 37(3–4), 279–293.

    Article  Google Scholar 

  78. Zhang, H. W., Zhang, Z., & Chen, J. T. (2007). 3D modeling of material flow in friction stir welding under different process parameters. Journal of Materials Processing Technology, 183, 62–70.

    Article  Google Scholar 

  79. Zhang, Z., & Zhang, H. W. (2009). Numerical studies on the effect of transverse speed in friction stir welding. Materials and Design, 30(3), 900–907.

    Article  Google Scholar 

  80. Grujicic, M., He, T., Arakere, G., Yalavarthy, H. V., Yen, C.-F., & Cheeseman, B. A. (2010). Fully coupled thermomechanical finite element analysis of material evolution during friction-stir welding of AA5083. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(4), 609–625.

    Article  Google Scholar 

  81. Grujicic, M., Ramaswami, S., Snipes, J. S., Avuthu, V., Galgalikar, R., & Zhang, Z. (2015). Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method. Journal of Materials Engineering and Performance, 24(9), 3471–3486.

    Article  Google Scholar 

  82. Grujicic, M., Pandurangan, B., Yen, C. F., Cheeseman, B. A. (2012). Modifications in the AA5083 Johnson-Cook material model for use in friction stir welding computational analyses. Journal of Materials Engineering and Performance, 21(11), 2207–2217.

    Article  Google Scholar 

  83. Mandal, S., Rice, J., & Elmustafa, A. A. (2008). Experimental and numerical investigation of the plunge stage in friction stir welding. Journal of Materials Processing Technology, 203(1–3), 411–419.

    Article  Google Scholar 

  84. Assidi, M., Fourment, L., Guerdoux, S., & Nelson, T. (2010). Friction model for friction stir welding process simulation: Calibrations from welding experiments. International Journal of Machine Tools and Manufacture, 50(2), 143–155.

    Article  Google Scholar 

  85. Yu, M., Li, W. Y., Li, J. L., & Chao, Y. J. (2012). Modelling of entire friction stir welding process by explicit finite element method. Materials Science and Technology, 28(7), 812–817.

    Article  Google Scholar 

  86. Chakrabarty, J. (2006). Theory of plasticity (3rd ed.). Oxford: Butterworth-Heinemann.

    MATH  Google Scholar 

  87. Kobayashi, S., OH, S.-I., & Altan, T. (1989). Metal forming and the finite element method, Oxford series. Oxford: Oxford University Press.

    Google Scholar 

  88. Perzyna, P. (1966). Fundamental problems in viscoplasticity. Advances in Applied Mechanics, 9, 243–377.

    Article  Google Scholar 

  89. DEFORM. (2015). v11 Documentation.

    Google Scholar 

  90. Jain, R., Pal, S. K., & Singh, S. B. (2017). Finite element simulation of pin shape influence on material flow, forces in friction stir welding. The International Journal of Advanced Manufacturing Technology.

    Google Scholar 

  91. Jain, R., Pal, S. K., & Singh, S. B. (2017). Numerical modeling methologies for friction stir welding process. In P. J. Davim (Ed.), Computational methods and production engineering: Research and development (1st ed., pp. 125–170). United Kingdom: Woodhead Publishing, Elsevier.

    Chapter  Google Scholar 

  92. Jain, R., Pal, S. K., & Singh, S. B. (2012). Finite element simulation of temperature and strain distribution in Al2024 aluminum alloy by friction stir welding. In 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), 98, 3–7.

    Google Scholar 

  93. Jain, R., Pal, S. K., & Singh, S. B. (2017). Finite element simulation of temperature and strain distribution during friction stir welding of AA2024 aluminum alloy. Journal of The Institution of Engineers (India): Series C, 98(1), 37–43.

    Article  Google Scholar 

  94. Jain, R., Pal, S. K., & Singh, S. B. (2016). A study on the variation of forces and temperature in a friction stir welding process: A finite element approach. Journal of Manufacturing Processes, 23, 278–286.

    Article  Google Scholar 

  95. Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method volume 1 : The basis, 5th ed.

    Google Scholar 

  96. Zienkiewicz, O. C., Taylor, R. L. (2000). The finite element method volume 2: Solid mechanics, 5th ed.

    Google Scholar 

  97. Rebelo, N., & Kobayashi, S. (1980). A coupled analysis of viscoplastic deformation and heat transfer-I. International Journal of Mechanical Sciences, 22, 699–705.

    Article  Google Scholar 

  98. Rout, M., Pal, S. K., & Singh, S. B. (2017). Finite element modeling of hot rolling. In P. J. Davim (Ed.), Computational methods and production engineering: Research and development (pp. 83–124). Woodhead Publishing, .

    Chapter  Google Scholar 

  99. Su, H., Wu, C. S., Pittner, A., & Rethmeier, M. (2013). Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. Journal of Manufacturing Processes, 15, 495–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, R., Pal, S.K., Singh, S.B. (2018). Thermomechanical Simulation of Friction Stir Welding Process Using Lagrangian Method. In: Dixit, U., Kant, R. (eds) Simulations for Design and Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8518-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8518-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8517-8

  • Online ISBN: 978-981-10-8518-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics