Skip to main content

Computational Fluid Dynamics Analysis of MQL Spray Parameters and Its Influence on MQL Milling of SS304

  • Conference paper
  • First Online:
Simulations for Design and Manufacturing

Abstract

The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of quality of the emulsion to sustain the desired machining environment. To sustain a controlled machining environment, it is necessary to adopt an effectively lubricated tool–work interface. As a result, the study of the machining process using a limited amount of lubricant/coolant (Minimum Quantity Lubrication) is highly appropriate. The aim of this research is to develop a Computational Fluid Dynamics (CFD) model to duplicate the atomization (mist formation) in MQL milling. Air pressure and mass flow rate were considered as the process parameters. Discrete Phase Model (DPM) was used to simulate the atomization because the mass flow rate of the oil is very low and also it acts as a discrete medium in air. The diameter of the droplet and velocity of the jet were acquired at various input conditions for achieving the optimal values of oil mass flow rate and air pressure respectively. It is seen that medium size (around 10.2 µm) of droplet plays a significant role in improved performance by the way of reduction in cutting force and surface roughness in MQL milling of SS304.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou-El-Hossein, Z. Y. K. A. (2005). High speed end milling of AISI 304 stainless steel using new geometrically developed carbide inserts (pp. 1–6). In Proceedings of the 13th International Science Conference.

    Article  Google Scholar 

  2. Kedare, S. B., Borse, D. R., & Shahane, P. T. (2014). Effect of minimum quantity lubrication (MQL) on surface roughness of mild steel of 15HRC on universal milling machine. Procedia Materials Science, 6, 150–153.

    Article  Google Scholar 

  3. Park, K. H., Olortegui-Yume, J., Yoon, M. C., & Kwon, P. (2010). A study on droplets and their distribution for minimum quantity lubrication (MQL). International Journal of Machine Tools and Manufacture, 50(9), 824–833.

    Article  Google Scholar 

  4. Sharif, S., Yusof, N. M., Idris, M. H., Ahmad, Z. B., Sudin, I., Ripin, A., et al. (2009). Feasibility study of using vegetable oil as a cutting lubricant through the use of minimum quantity lubrication during machining (pp. 1–37). Malaysia: University of Technology.

    Google Scholar 

  5. Weinert, K., Inasaki, I., Sutherland, J. W., & Wakabayashi, T. (2004). Dry machining and minimum quantity lubrication. CIRP Annals—Manufacturing Technology, 53(2), 511–537.

    Article  Google Scholar 

  6. Dudzinski, D., Devillez, A., Moufki, A., Larrouquère, D., Zerrouki, V., & Vigneau, J. (2004). A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture, 44(4), 439–456.

    Article  Google Scholar 

  7. Tiwana, J. S., & Pal, A. (2014). A review study on minimum quantity lubrication in machining. IJRDET, 2(5), 2012–2015.

    Google Scholar 

  8. Balan, A. S. S., Vijayaraghavan, L., & Krishnamurthy, R. (2013). Minimum quantity lubricated grinding of Inconel 751 alloy. Materials and Manufacturing Processes, 28(04), 430–435.

    Article  Google Scholar 

  9. Dhar, N. R. A., Ahmed, M. T., & Islam, S. (2007). An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. International Journal of Machine Tools and Manufacture, 47, 748–753.

    Article  Google Scholar 

  10. Rahman, M., Senthil Kumar, A., & Salam, M. U. (2002). Experimental evaluation on the effect of minimal quantities of lubricant in milling. International Journal of Machine Tools and Manufacture, 42(5), 539–547.

    Article  Google Scholar 

  11. Uysal, A., Demiren, F., & Altan, E. (2015). Applying minimum quantity lubrication (MQL) method on milling of martensitic stainless steel by using nano Mos 2 reinforced vegetable cutting fluid. Procedia-Social and Behavioral Sciences, 195, 2742–2747.

    Article  Google Scholar 

  12. El, C., Arunachalam, N., & Vijayaraghavan, L. (2015). Analytical model to predict Sauter mean diameter in air assisted atomizers for MQL in machining application. Procedia CIRP, 37, 117–121.

    Article  Google Scholar 

  13. Lutao, Y. A. N., Songmei, Y., & Qiang, L. I. U. (2012). Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel. Chinese Journal of Mechanical Engineering, 25(3), 419–429.

    Article  Google Scholar 

  14. Tawakoli, T., Hadad, M. J., & Sadeghi, M. H. (2010). Influence of oil mist parameters on minimum quantity lubrication—MQL grinding process. International Journal of Machine Tools and Manufacture, 50(6), 521–531.

    Article  Google Scholar 

  15. Rahman, M. (2012). A computational fluid dynamics analysis of single and three nozzles minimum quantity lubricant flow for milling. International Journal of Automotive and Mechanical Engineering, 6, 768–776.

    Google Scholar 

  16. Heisel, U., Lutz, M., Spath, D., Wassmer, R. A., & Walter, U. (1994). Application of minimum quantity cooling lubrication technology in cutting processes. Production Engineering, 2(1), 49–54.

    Google Scholar 

  17. Schick, R. J. (1997). Spray technology reference guide: Understanding drop size preface (p. 6). In 47th Chemical Processing Industry Expo.

    Google Scholar 

  18. Maruda, R. W., Krolczyk, G. M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., et al. (2016). A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture, 100, 81–92.

    Article  Google Scholar 

  19. Trela, M., Zembik, J., & Durkiewicz, B. (1982). Droplet deposition on a flat plate from an air/water turbulent mist flow. International Journal of Multiphase Flow, 8(3), 227–238.

    Article  Google Scholar 

  20. Veysey, J., & Goldenfeld, N. (2007). Simple viscous flows: From boundary layers to the renormalization group. Reviews of Modern Physics, 79(3), 883–927.

    Article  MathSciNet  Google Scholar 

  21. Obikawa, T., Asano, Y., & Kamata, Y. (2009). Computer fluid dynamics analysis for efficient spraying of oil mist in finish-turning of Inconel 718. International Journal of Machine Tools and Manufacture, 49(12–13), 971–978.

    Article  Google Scholar 

  22. Lopez de Lacalle, L. N., Angulo, C., Lamikiz, A., & Sanchez, J. A. (2006). Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. Journal of Materials Processing Technology, 172, 11–15.

    Article  Google Scholar 

  23. Park, K. H., Olortegui-Yume, J. A., Joshi, S., Kwon, P., Yoon, M. C., Lee, G. B., et al. (2008). Measurement of droplet size and distribution for minimum quantity lubrication (MQL) (pp. 447–454). In International Conference on Smart Manufacturing Application.

    Google Scholar 

  24. ANSYS (2013). ANSYS FLUENT User’s Guide”, vol. 15317, no. November, p. 2498.

    Google Scholar 

  25. Liu, Z. Q., Cai, X. J., Chen, M., & An, Q. L. (2011). Investigation of cutting force and temperature of end-milling Ti-6Al-4 V with different minimum quantity lubrication (MQL) parameters. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8), 1273–1279.

    Article  Google Scholar 

  26. Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of Materials Processing Technology, 209, 5573–5583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. S. Balan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rohit, J.N., Surendra Kumar, K., Sura Reddy, N., Kuppan, P., Balan, A.S.S. (2018). Computational Fluid Dynamics Analysis of MQL Spray Parameters and Its Influence on MQL Milling of SS304. In: Dixit, U., Kant, R. (eds) Simulations for Design and Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8518-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8518-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8517-8

  • Online ISBN: 978-981-10-8518-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics