Skip to main content

The Molecular, Cellular, and Systems-Level Structure of the Basal Ganglia

  • Chapter
  • First Online:
Computational Neuroscience Models of the Basal Ganglia

Abstract

This chapter provides a brief overview of the systems, cellular, and molecular structure of the various nuclei of basal ganglia (BG) such as striatum, STN, GPe, GPi, and the SNr including the various neurotransmitters impacting its function. We start with the system-level connection between cortex and BG and then cover the various cell types, receptors (such as dopaminergic, acetylcholine) present on each of the BG nuclei. The effect of Parkinson’s disease on their dynamics especially the STN–GPe oscillatory network is then discussed. The dopaminergic systems SNc and VTA are also covered in terms of their architecture and input–output synaptic projection patterns. Finally, a short intro to the multiple cortico-BG loops and their functional relevance is discussed. This brief overview helps provide background on BG structure, which is the basis of several models we present in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberico, S. L., Cassell, M. D., & Narayanan, N. S. (2015). The vulnerable ventral tegmental area in Parkinson’s disease. Basal ganglia, 5(2), 51–55.

    Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.

    Article  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381.

    Article  Google Scholar 

  • Aravamuthan, B., Muthusamy, K., Stein, J., Aziz, T., & Johansen-Berg, H. (2007). Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage, 37(3), 694–705.

    Article  Google Scholar 

  • Basso, M. A., Powers, A. S., & Evinger, C. (1996). An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. The Journal of Neuroscience, 16(22), 7308–7317.

    Google Scholar 

  • Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.

    Article  Google Scholar 

  • Baunez, C., Humby, T., Eagle, D. M., Ryan, L. J., Dunnett, S. B., & Robbins, T. W. (2001). Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 13(8), 1609–1616.

    Article  Google Scholar 

  • Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1), 182–217.

    Article  Google Scholar 

  • Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., & Benabid, A. L. (2002). Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement Disorders, 17(S3), S145–S149.

    Article  Google Scholar 

  • Bennett, B. D., Callaway, J. C., & Wilson, C. J. (2000). Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. The Journal of Neuroscience, 20(22), 8493–8503.

    Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., & Vaadia, E. (1998). Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.

    Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. Journal of Neurophysiology, 72(2), 507–520.

    Article  Google Scholar 

  • Beurrier, C., Congar, P., Bioulac, B., & Hammond, C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. The Journal of Neuroscience, 19(2), 599–609.

    Google Scholar 

  • Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: Oscillations in the subthalamic nucleus–external globus pallidus network. Trends in Neurosciences, 25(10), 525–531.

    Article  Google Scholar 

  • Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience, 19(17), 7617–7628.

    Google Scholar 

  • Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194–202.

    Article  Google Scholar 

  • Blandini, F. (2010). An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Functional Neurology, 25(2), 65.

    Google Scholar 

  • Bolam, J., Bergman, H., Graybiel, A., Kimura, M., Plenz, D., Seung, H., … Wickens, J. (2006). Microcircuits, molecules and motivated behaviour: Microcircuits in the striatum. Paper presented at the Microcircuits: The Interface Between Neurons and Global Brain Function, Dahlem Workshop Report.

    Google Scholar 

  • Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18(4), 357–363.

    Article  Google Scholar 

  • Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.

    Article  Google Scholar 

  • Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. The Journal of Neuroscience, 21(3), 1033–1038.

    Google Scholar 

  • Chakravarthy, V., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Charpier, S., Beurrier, C., & Paz, J. (2010). The subthalamic nucleus: from in vitro to in vivo mechanisms. Handbook of Basal Ganglia Structure and Function, 259–273.

    Google Scholar 

  • Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. The Lancet Neurology, 5(3), 235–245.

    Article  Google Scholar 

  • Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism & Related Disorders, 17(10), 717–723.

    Article  Google Scholar 

  • Chersi, F., Mirolli, M., Pezzulo, G., & Baldassarre, G. (2013). A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks, 41, 212–224.

    Article  Google Scholar 

  • DeLong, M., & Wichmann, T. (2010). Changing views of basal ganglia circuits and circuit disorders. Clinical EEG and Neuroscience, 41(2), 61–67.

    Article  Google Scholar 

  • Deniau, J., Hammond, C., Riszk, A., & Feger, J. (1978). Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidences for the existence of branched neurons. Experimental Brain Research, 32(3), 409–422.

    Article  Google Scholar 

  • Fan, K. Y., Baufreton, J., Surmeier, D. J., Chan, C. S., & Bevan, M. D. (2012). Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. The Journal of Neuroscience, 32(40), 13718–13728.

    Article  Google Scholar 

  • Foffani, G., Bianchi, A., Baselli, G., & Priori, A. (2005). Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. The Journal of Physiology, 568(2), 699–711.

    Article  Google Scholar 

  • Gerfen, C. R. (1984). The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311(5985), 461.

    Google Scholar 

  • Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432.

    Google Scholar 

  • Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441.

    Article  Google Scholar 

  • Gerfen, C. R., & Young, W. S. (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Research, 460(1), 161–167.

    Article  Google Scholar 

  • Gillies, A., Willshaw, D., Gillies, A., & Willshaw, D. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265(1410), 2101–2109.

    Article  Google Scholar 

  • Grace, A., & Bunney, B. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates. Neuroscience, 10(2), 317–331.

    Article  Google Scholar 

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826–1831.

    Article  Google Scholar 

  • Gurney, K., Prescott, T. J., & Redgrave, P. (2001a). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84(6), 401–410.

    Article  MATH  Google Scholar 

  • Gurney, K., Prescott, T. J., & Redgrave, P. (2001b). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological Cybernetics, 84(6), 411–423.

    Article  MATH  Google Scholar 

  • Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78(2), 69–74.

    Article  Google Scholar 

  • Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20(6), 2369–2382.

    Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

    Article  Google Scholar 

  • Han, X., Jing, M.-y., Zhao, T.-y., Wu, N., Song, R., & Li, J. (2017). Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metabolic Brain Disease, 1–12.

    Google Scholar 

  • Hasbi, A., O’Dowd, B. F., & George, S. R. (2011). Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Molecular Brain, 4(1), 26.

    Article  Google Scholar 

  • Heida, T., Lakke, E. A., & Usunoff, K. G. (2008a). Subthalamic nucleus Part I: Development, cytology, topography and connections, the advances in anatomy, embryology and cell biology. Berlin: Springer.

    Google Scholar 

  • Heida, T., Marani, E., & Usunoff, K. G. (2008b). The subthalamic nucleus: Part II: Modelling and simulation of activity. Berlin: Springer.

    Book  Google Scholar 

  • Holgado, A. J. N., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. The Journal of Neuroscience, 30(37), 12340–12352.

    Article  Google Scholar 

  • Humphries, M., & Gurney, K. (2002). The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems, 13(1), 131–156.

    Article  MATH  Google Scholar 

  • Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. The Journal of Neuroscience, 13(11), 4908–4923.

    Google Scholar 

  • Kita, H., Chang, H., & Kitai, S. (1983). The morphology of intracellularly labeled rat subthalamic neurons: A light microscopic analysis. Journal of Comparative Neurology, 215(3), 245–257.

    Article  Google Scholar 

  • Kita, H., & Kita, S. (1994). The morphology of globus pallidus projection neurons in the rat: An intracellular staining study. Brain Research, 636(2), 308–319.

    Article  Google Scholar 

  • Knable, M. B., & Weinberger, D. R. (1997). Dopamine, the prefrontal cortex and schizophrenia. Journal of psychopharmacology, 11(2), 123–131.

    Google Scholar 

  • Koós, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2(5), 467–472.

    Article  Google Scholar 

  • Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.

    Article  Google Scholar 

  • Lawson, R., Seymour, B., Nord, C., Thomas, D., Roiser, J., Dayan, P., & Pilling, S. (2016). Disrupted habenula function in major depression. Molecular psychiatry, 22(2), 202.

    Google Scholar 

  • Lee, C. R., & Tepper, J. M. (2009). Basal ganglia control of substantia nigra dopaminergic neurons. In Birth, life and death of dopaminergic neurons in the substantia nigra (pp. 71–90), Berlin: Springer.

    Google Scholar 

  • Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.

    Article  Google Scholar 

  • Mallet, N., Le Moine, C., Charpier, S., & Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. The Journal of Neuroscience, 25(15), 3857–3869.

    Article  Google Scholar 

  • Marsden, C. (1986). Movement disorders and the basal ganglia. Trends in neurosciences, 9, 512–515.

    Google Scholar 

  • Maurice, N., Deniau, J.-M., Glowinski, J., & Thierry, A.-M. (1998). Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. The Journal of Neuroscience, 18(22), 9539–9546.

    Google Scholar 

  • Merello, M. (2007). Non-motor disorders in Parkinson’s disease. Revista de neurologia, 47(5), 261–270.

    Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the national academy of sciences, 93(16), 8683–8687.

    Google Scholar 

  • Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73–85.

    Google Scholar 

  • Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: Electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.

    Article  Google Scholar 

  • Nakano, K. (2000). Neural circuits and topographic organization of the basal ganglia and related regions. Brain and Development, 22, 5–16.

    Article  Google Scholar 

  • Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43(2), 111–117.

    Article  Google Scholar 

  • Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.

    Article  Google Scholar 

  • Oliva, I., & Wanat, M. J. (2016). Ventral tegmental area afferents and drug-dependent behaviors. Frontiers in psychiatry, 7.

    Google Scholar 

  • Park, C., Worth, R. M., & Rubchinsky, L. L. (2010). Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. Journal of Neurophysiology, 103(5), 2707–2716.

    Article  Google Scholar 

  • Park, C., Worth, R. M., & Rubchinsky, L. L. (2011). Neural dynamics in Parkinsonian brain: The boundary between synchronized and nonsynchronized dynamics. Physical Review E, 83(4), 042901.

    Article  Google Scholar 

  • Plenz, D., & Kitai, S. T. (1998). Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures. The Journal of Neuroscience, 18(1), 266–283.

    Google Scholar 

  • Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.

    Article  Google Scholar 

  • Rashid, A. J., So, C. H., Kong, M. M., Furtak, T., El-Ghundi, M., Cheng, R., … George, S. R. (2007). D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences, 104(2), 654–659.

    Google Scholar 

  • Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of Parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.

    Google Scholar 

  • Reig, R., & Silberberg, G. (2014). Multisensory integration in the mouse striatum. Neuron, 83(5), 1200–1212.

    Article  Google Scholar 

  • Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Research, 518(1), 47–54.

    Article  Google Scholar 

  • Rodriguez-Oroz, M. C., López-Azcárate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., … Obeso, J. A. (2010). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain, awq301.

    Google Scholar 

  • Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.

    Article  Google Scholar 

  • Sato, F., Lavallée, P., Lévesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology, 417(1), 17–31.

    Article  Google Scholar 

  • Schrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson’s disease. Brain, 123(11), 2297–2305.

    Article  Google Scholar 

  • Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops. Neural Networks, 26, 59–74.

    Article  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of neurophysiology, 80(1), 1–27.

    Google Scholar 

  • Seeman, P. (1980). Brain dopamine receptors. Pharmacological Reviews, 32(3), 229–313.

    Google Scholar 

  • Singleton, A., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., … Nussbaum, R. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science, 302(5646), 841–841.

    Google Scholar 

  • Stamatakis, A. M., Jennings, J. H., Ung, R. L., Blair, G. A., Weinberg, R. J., Neve, R. L., … Deisseroth, K. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039–1053.

    Google Scholar 

  • Steiner, H., & Tseng, K. Y. (2010). Handbook of Basal Ganglia Structure and Function: A Decade of Progress (Vol. 20), Access Online via Elsevier.

    Google Scholar 

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.

    Article  Google Scholar 

  • Surmeier, D. J., Song, W.-J., & Yan, Z. (1996). Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. The Journal of Neuroscience, 16(20), 6579–6591.

    Google Scholar 

  • Swanson, L. (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain research bulletin, 9(1), 321–353.

    Google Scholar 

  • Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., & Nambu, A. (2011). Subthalamo-pallidal interactions underlying Parkinsonian neuronal oscillations in the primate basal ganglia. European Journal of Neuroscience, 34(9), 1470–1484.

    Article  Google Scholar 

  • Tepper, J., Martin, L., & Anderson, D. (1995). GABA~A Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons. Journal of Neuroscience, 15(4), 3092–3103.

    Google Scholar 

  • Weinberger, M., & Dostrovsky, J. O. (2011). A basis for the pathological oscillations in basal ganglia: the crucial role of dopamine. NeuroReport, 22(4), 151.

    Article  Google Scholar 

  • Willshaw, D., & Li, Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269(1491), 545–551.

    Article  Google Scholar 

  • Wilson, C. J., & Bevan, M. D. (2011). Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease. Neuroscience, 198, 54–68.

    Article  Google Scholar 

  • Wood-Kaczmar, A., Gandhi, S., & Wood, N. (2006). Understanding the molecular causes of Parkinson’s disease. Trends in Molecular Medicine, 12(11), 521–528.

    Article  Google Scholar 

  • Xia, R., & Mao, Z.-H. (2012). Progression of motor symptoms in Parkinson’s disease. Neuroscience Bulletin, 28(1), 39–48.

    Article  Google Scholar 

  • Yelnik, J. (2002). Functional anatomy of the basal ganglia. Movement Disorders, 17(S3), S15–S21.

    Article  Google Scholar 

  • Yamaguchi, T., Wang, H.-L., Li, X., Ng, T. H., & Morales, M. (2011). Mesocorticolimbic glutamatergic pathway. Journal of Neuroscience, 31(23), 8476–8490.

    Google Scholar 

  • Yucelgen, C., Denizdurduran, B., Metin, S., Elibol, R., & Sengor, N. S. (2012). A biophysical network model displaying the role of basal ganglia pathways in action selection. In Artificial neural networks and machine learning–ICANN 2012 (pp. 177–184), Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandali, A., Srinivasa Chakravarthy, V., Moustafa, A.A. (2018). The Molecular, Cellular, and Systems-Level Structure of the Basal Ganglia. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics