Skip to main content

Prediction of Compressive Strength of Geopolymers Using Multi-objective Feature Selection

  • Chapter
  • First Online:
Big Data in Engineering Applications

Part of the book series: Studies in Big Data ((SBD,volume 44))

  • 2014 Accesses

Abstract

To reduce the carbon dioxide emission to the environment, production of geopolymer is one of the effective binding materials to act as a substitute of cement. The strength of the geopolymer depends upon different factors such as chemical constituents, curing temperature, curing time, super plasticizer etc. In this paper, prediction models for compressive strength of geopolymer is presented using recently developed artificial intelligence techniques; multi-objective feature selection (MOFS), functional network (FN), multivariate adaptive regression spline (MARS) and multi gene genetic programming (MGGP). The MOFS is also used to find the subset of influential parameters responsible for the compressive strength of geopolymers. MOFS has been applied with artificial neural network (ANN) and non-dominated sorting genetic algorithm (NSGA II). The parameters considered for development of prediction models are curing time, NaOH concentration, Ca(OH)2 content, superplasticizer content, types of mold, types of geopolymer and H2O/Na2O molar ratio. The developed AI models were compared in terms of different statistical parameters such as average absolute error, root mean square error correlation coefficient, Nash-Sutcliff coefficient of efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM. (2013). International Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). (ASTM C109/C109M) West Conshohocken, PA 19428-2959. United States.

    Google Scholar 

  2. Bach, F. R. (2008). Bolasso: Model consistent Lasso estimation through the bootstrap. In A. McCallum & S. T. Roweis (Eds.), Proceedings of 25th International Conference on Machine Learning, (ICML2008), Helsinki, Finland (pp. 33–400).

    Google Scholar 

  3. Castillo, E., Cobo, A., Gutierrez, J. M., & Pruneda, E. (1998). An introduction to functional networks with applications. Boston: Kluwer.

    MATH  Google Scholar 

  4. Castillo, E., Cobo, A., Manuel, J., Gutierrez, J. M., & Pruneda, E. (2000). Functional networks: A new network-based methodology. Computer-Aided Civil and Infrastructure Engineering, 15, 90–106.

    Article  Google Scholar 

  5. Cervante, L., Xue, B., Zhang, M., & Shang, L. (2012). Binary particle swarm optimisation for feature selection: A filter based approach. In Proceedings of Evolutionary Computation (CEC), 2012 IEEE Congress, Brisbane, QLD (art. no. 6256452, pp. 881–888).

    Google Scholar 

  6. Das, S. K. (2013). Artificial neural networks in geotechnical engineering: Modeling and application issues, Chapter 10. In X. Yang, A. H. Gandomi, S. Talatahari & A. H. Alavi (Eds.), Metaheuristics in water, geotechnical and transport engineering (pp. 231–270). London: Elsevier.

    Chapter  Google Scholar 

  7. Das, S. K., & Suman, S. (2015). Prediction of lateral load capacity of pile in clay using multivariate adaptive regression spline and functional network. The Arabian Journal for Science and Engineering., 40(6), 1565–1578.

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  9. Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305.

    MATH  Google Scholar 

  10. Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1–141.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gandomi, A. H., & Alavi, A. H. (2012). A new multi-gene genetic programming approach to nonlinear system modeling. Part II: Geotechnical and Earthquake Engineering Problems. Neural Computing and Applications, 21(1), 189–201.

    Article  Google Scholar 

  12. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research., 3, 1157–1182.

    MATH  Google Scholar 

  13. He, X., Zhang, Q., Sun, N., & Dong, Y. (2009). Feature selection with discrete binary differential evolution. In Proceedings of International Conference on Artificial Intelligence and Computational Intelligence, AICI 2009, Shanghai (Vol. 4, art. no. 5376334, pp. 327–330).

    Google Scholar 

  14. http://www.geopolymer.org/faq/alkali-activated-materials-geopolymers/.

  15. Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research Cement and Concrete Research, 41, 1232–1243.

    Article  Google Scholar 

  16. Kutyłowska, M. (2016). Comparison of two types of artificial neural networks for predicting failure frequency of water conduits. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/ppci.8737.

  17. Mehta, P. K. (2004). High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China (pp. 3–14).

    Google Scholar 

  18. Nazari, A., Hajiallahyari, H., Rahimi, A., Khanmohammadi, H., & Amini, M. (2012). Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks. Neural Computing and Applications, 1–9.

    Google Scholar 

  19. Nazari, A., & Pacheco-Torgal, F. (2013). Predicting compressive strength of different geopolymers by artificial neural networks. Ceramics International, 39, 2247–2257.

    Article  Google Scholar 

  20. Nazari, A., & Riahi, S. (2012). Prediction of the effects of nanoparticles on early-age compressive strength of ash-based geopolymers by fuzzy logic. International Journal of Damage Mechanics, 22(2), 247–267.

    Article  Google Scholar 

  21. Neshatian, K., & Zhang, M. (2009). Pareto front feature selection: Using genetic programming to explore feature space. In Proceedings of 11th Annual conference on Genetic and Evolutionary Computation, GECCO’09 (pp. 1027–1034). New York, NY, USA: ACM.

    Google Scholar 

  22. Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A. F., Jamshidi, M., & Ding, Y. (2012). Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Construction and Building Materials, 30, 400–405.

    Article  Google Scholar 

  23. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315–1322.

    Article  Google Scholar 

  24. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2007). Investigations about the effect of aggregates on strength and microstructure of geopoly-meric mine waste mud binders. Cement and Concrete Research, 37, 933–941.

    Article  Google Scholar 

  25. Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, 25, 3732–3745.

    Article  Google Scholar 

  26. Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials and Design, 53, 1005–1025.

    Article  Google Scholar 

  27. Searson, D. P., Leahy, D. E., & Willis, M. J. (2010). GPTIPS: An open source genetic programming toolbox from multi-gene symbolic regression. In Proceedings of the International Multi Conference of Engineers and Computer Scientists, Hong Kong (Vol. 1, no. 3, pp. 77–80).

    Google Scholar 

  28. Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90.

    Article  Google Scholar 

  29. Smith, G. N. (1986). Probability and statistics in civil engineering: An introduction. London: Collins.

    Google Scholar 

  30. Tarawneh, B., & Nazzal, M. D. (2014). Optimization of resilient modulus prediction from FWD results using artificial neural network. Periodica Polytechnica Civil Engineering, 58(2), 143–154. https://doi.org/10.3311/ppci.2201.

    Article  Google Scholar 

  31. Ünes, F., Demirci, M., & Kisi, Ö. (2015). Prediction of Millers Ferry Dam reservoir level in USA using artificial neural network. Periodica Polytechnica Civil Engineering, 59(3), 309–318. https://doi.org/10.3311/ppci.7379.

    Article  Google Scholar 

  32. Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang, M. (2012). A multi-objective particle swarm optimisation for filter based feature selection in classification problems. Connection Science, 24(2–3), 91–116.

    Article  Google Scholar 

  33. Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang, M. (2014). Binary PSO and rough set theory for feature selection: A multi-objective filter based approach. International Journal of Computational Intelligence and Applications, 13(2), art. no. 1450009.

    Article  Google Scholar 

  34. Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. Proceedings of Fourteenth International Conference on Machine Learning (ICML’97) (Vol. 97, pp. 412–420), Nashville, Tennessee, USA.

    Google Scholar 

  35. Zare, H., Haffari, G., Gupta, A., & Brinkman, R. R. (2013). Scoring relevancy of features based on combinatorial analysis of Lasso with application to lymphoma diagnosis. BMC Genomics, 14, art. no. S14.

    Article  Google Scholar 

  36. Zhu, Z., Ong, Y. S., & Dash, M. (2007). Wrapper-filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 37(1), 70–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasyamayee Garanayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garanayak, L., Das, S.K., Mohanty, R. (2018). Prediction of Compressive Strength of Geopolymers Using Multi-objective Feature Selection. In: Roy, S., Samui, P., Deo, R., Ntalampiras, S. (eds) Big Data in Engineering Applications. Studies in Big Data, vol 44. Springer, Singapore. https://doi.org/10.1007/978-981-10-8476-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8476-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8475-1

  • Online ISBN: 978-981-10-8476-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics