Skip to main content

Photovoltaic/Thermal Water Cooling: A Review of Experimental Design with Electrical Efficiency

  • Conference paper
  • First Online:
  • 644 Accesses

Abstract

Photovoltaic (PV) cells can produce electrical energy from irradiance; however besides than electrical energy transformation, the remainder energy can also be transformed into thermal energy which increases the temperature of PV cell. The high operating temperature in PV cell will affect the electrical power output and PV cell lifespan. Numbers of researchers had designed different Photovoltaic/Thermal (PV/T) collector for cooling with better electrical and thermal efficiency. This paper presents a review of literature available that cover different configuration and design of water Photovoltaic/Thermal (PV/T) and their performances in terms of electrical efficiency. The review covers detailed previous researchers work of experimental design and the evaluation of the electrical efficiency. It can be concluded that, the performance of PV/T system depends on the factor of different cooling methods of passive and active, type and size of the cell, and climatic factors such as solar radiation and ambient temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdolzadeh, M., & Ameri, M. (2009). Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renewable Energy, 34(1), 91–96. https://doi.org/10.1016/j.renene.2008.03.024.

    Article  Google Scholar 

  • Abdulgafar, S. A., Omar, O. S., & Yousif, K. M. (2007). Improving the efficiency of polycrystalline solar panel via water immersion method. International Journal of Innovative Research in Science, Engineering and Technology (An ISO Certified Organization), 3297(1).

    Google Scholar 

  • Audwinto, I. A., Leong, C. S., Sopian, K., & Zaidi, S. H. (2015). Temperature dependences on various types of Photovoltaic (PV) panel. IOP Conference Series: Materials Science and Engineering, 88, 12066. https://doi.org/10.1088/1757-899X/88/1/012066.

    Article  Google Scholar 

  • Chandrasekar, M., Suresh, S., Senthilkumar, T., & Ganesh Karthikeyan, M. (2013). Passive cooling of standalone flat PV module with cotton wick structures. Energy Conversion and Management, 71, 43–50. https://doi.org/10.1016/j.enconman.2013.03.012.

    Article  Google Scholar 

  • Dorobanțu, L., Popescu, M. O., Popescu, C. L., & Crăciunescu, A. (2013). Experimental assessment of PV panels front water cooling. Strategy, 1(11), 1–4.

    Google Scholar 

  • Dubey, S., & Tiwari, G. N. (2009). Analysis of PV/T flat plate water collectors connected in series. Solar Energy, 83(9), 1485–1498. https://doi.org/10.1016/j.solener.2009.04.002.

    Article  Google Scholar 

  • El-Seesy, I. E., Khalil, T., & Ahmed, M. H. (2012). Experimental investigations and developing of photovoltaic/thermal system. World Applied Sciences Journal, 19(9), 1342–1347. (ISSN 1818-4952). https://doi.org/10.5829/idosi.wasj.2012.19.09.2794.

  • Fraisse, G., Ménézo, C., & Johannes, K. (2007). Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type. Solar Energy, 81(11), 1426–1438. https://doi.org/10.1016/j.solener.2006.11.017.

    Article  Google Scholar 

  • Gakkhar, N., Soni, M. S., & Jakhar, S. (2016). Analysis of water cooling of CPV cells mounted on absorber tube of a parabolic trough collector. Energy Procedia, 90, 78–88. https://doi.org/10.1016/j.egypro.2016.11.172.

    Article  Google Scholar 

  • Gedik, E. (2016). Experimental investigation of module temperature effect on photovoltaic panels efficiency. Journal of Polytechnic, 19(4), 569–576.

    Google Scholar 

  • Grubisić-Čabo, F., Nizetić, S., & Marco, T. G. (2016). Photovoltaic panels: A review of the cooling techniques: EBSCOhost. Transactions of FAMENA, 40(1), 63–74.

    Google Scholar 

  • Hosseini, R., Hosseini, N., & Khorasanizadeh, H. (2011). An experimental study of combining a photovoltaic system with a heating system. In World Renewable Energy Congress (pp. 2993–3000).

    Google Scholar 

  • Irwan, Y. M., Leow, W. Z., Irwanto, M., Fareq, M., Amelia, A. R., Gomesh, N., et al. (2015). Analysis air cooling mechanism for photovoltaic panel by solar simulator. International Journal of Electrical and Computer Engineering, 5(4), 636–643.

    Google Scholar 

  • Jakhar, S., Soni, M. S., & Gakkhar, N. (2016). Historical and recent development of concentrating photovoltaic cooling technologies. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.01.083.

    Article  Google Scholar 

  • Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells, 82(1), 131–137. https://doi.org/10.1016/j.solmat.2004.01.011.

    Article  Google Scholar 

  • Mishra, R. K., & Tiwari, A. (2012). Study of Hybrid Photovoltaic Thermal (HPVT) solar water heater at constant collection temperature for Indian climatic conditions. Ashdin Publishing Journal of Fundamentals of Renewable Energy and Applications, 2. https://doi.org/10.4303/jfrea/r120310.

  • Moharram, K. A., Abd-Elhady, M. S., Kandil, H. A., & El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal, 4(4), 869–877.doi: https://doi.org/10.1016/j.asej.2013.03.005.

    Article  Google Scholar 

  • Moradi, K., Ali Ebadian, M., & Lin, C.-X. (2013). A review of PV/T technologies: Effects of control parameters. International Journal of Heat and Mass Transfer, 64, 483–500. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.044.

    Article  Google Scholar 

  • Nižetić, S., Čoko, D., Yadav, A., & Grubišić-Čabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Conversion and Management, 108, 287–296. https://doi.org/10.1016/j.enconman.2015.10.079.

    Article  Google Scholar 

  • Ozgoren, M., Aksoy, M. H., Bakir, C., & Dogan, S. (2013). Experimental performance investigation of Photovoltaic/Thermal (PV-T) system. In EPJ Web of Conferences, 1106(45). https://doi.org/10.1051/epjconf201/34501106.

  • Pierrick, H., Christophe, M., Leon, G., & Patrick, D. (2015). Dynamic numerical model of a high efficiency PV-T collector integrated into a domestic hot water system. Solar Energy, 111, 68–81. https://doi.org/10.1016/j.solener.2014.10.031.

    Article  Google Scholar 

  • Rawat, P., Debbarma, M., Mehrotra, S., Sudhakar, K., & Sahu, P. K. (2014). Performance evaluation of solar photovoltaic/thermal hybrid water collector. In Impending Power Demand and Innovative Energy Paths (pp. 268–275). https://doi.org/10.1016/s0038-092x(00)00153-5.

  • Rosa-Clot, M., & Rosa-Clot, P. (2008). Submerged photovoltaic solar panel: SP2.

    Google Scholar 

  • Shenyi, W., & Chenguang, X. (2014). Passive cooling technology for photovoltaic panels for domestic houses (pp. 1–9). https://doi.org/10.1093/ijlct/ctu013.

  • Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275–286. https://doi.org/10.1016/j.solmat.2016.10.047.

    Article  Google Scholar 

  • Yazdanpanahi, J., Sarhaddi, F., & Mahdavi Adeli, M. (2015). Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Solar Energy, 118, 197–208. https://doi.org/10.1016/j.solener.2015.04.038.

    Article  Google Scholar 

  • Zhu, Q., & Si, L. (2012). Electrical outputs and thermal outputs of water/air cooled amorphous-silicon photovoltaic modules. Advances in Biomedical Engineering, 8, 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahratul Laily Edaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Edaris, Z.L., Saad, M.S., Tajuddin, M.F.N., Yusoff, S. (2018). Photovoltaic/Thermal Water Cooling: A Review of Experimental Design with Electrical Efficiency. In: Saian, R., Abbas, M. (eds) Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017 – Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-8471-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8471-3_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8470-6

  • Online ISBN: 978-981-10-8471-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics