Skip to main content

Statistical Mechanical Integral Equation Approach to Reveal the Solvation Effect on Hydrolysis Free Energy of ATP and Its Analogue

  • Chapter
  • First Online:
  • 589 Accesses

Abstract

Investigations of the hydrolysis reactions of adenosine triphosphate (ATP) and pyrophosphate in solution by the three-dimensional reference interaction site model self-consistent field (3D-RISM-SCF) theory are briefly reviewed. The theory is applied to the four different charged states of pyrophosphate, for which experimental data of hydrolysis free energies are available. The results of the reaction free energy for all the four charged states are almost constant, ~−8 kcal/mol, in accord with the experimental results, but in marked contrast to the conventional view, or the high-energy PO bond hypothesis. The theory is also applied to the hydrolysis reaction of ATP to clarify the molecular origin of the energy produced by the ATP hydrolysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akola J, Jones R (2003) Atp hydrolysis in water—a density functional study. J Phys Chem B 107(42):11774–11783

    Article  CAS  Google Scholar 

  • Andersen H, Chandler D (1972) Optimized cluster expansions for classical fluids. 1. General theory and variational formulation of mean spherical model and hard-sphere percus-yevick equations. J Chem Phys 57(5):1918–1929

    Article  CAS  Google Scholar 

  • Andersen H, Chandler D, Weeks J (1972) Optimized cluster expansions for classical fluids. 3. Applications to ionic solutions and simple liquids. J Chem Phys 57(7):2626–2631

    Article  CAS  Google Scholar 

  • Aqvist J, Warshel A (1993) Simulation of enzyme-reactions using valence-bond force-fields and other hybrid quantum-classical approaches. Chem Rev 93(7):2523–2544

    Article  Google Scholar 

  • Beglov D, Roux B (1996) Solvation of complex molecules in a polar liquid: an integral equation theory. J Chem Phys 104(21):8678–8689

    Article  CAS  Google Scholar 

  • Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101(39):7821–7826

    Article  CAS  Google Scholar 

  • Boyd DB, Lipscomb WN (1969) Electronic structures for energy-rich phosphates. J Theor Biol 25(3):403–420

    Article  CAS  Google Scholar 

  • Chandler D, Andersen HC (1972) Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. J Chem Phys 57(5):1930–1937

    Article  CAS  Google Scholar 

  • Colvin M, Evleth E, Akacem Y (1995) Quantum-chemical studies of pyrophosphate hydrolysis. J Am Chem Soc 117(15):4357–4362

    Article  CAS  Google Scholar 

  • Field MJ, Bash PA, Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J Comput Chem 11(6):700–733

    Article  CAS  Google Scholar 

  • Gao JL, Xia XF (1992) A priori evaluation of aqueous polarization effects through monte-carlo qm-mm simulations. Science 258(5082):631–635

    Article  CAS  Google Scholar 

  • George P, Witonsky RJ, Trachtma M, Wu C, Dorwart W, Richman L, Richman W, Shurayh F, Lentz B (1970) Squiggle-H2O—an enquiry into importance of solvation effects in phosphate ester and anhydride reactions. Biochim Biophys Acta 223(1):1–15

    Article  CAS  Google Scholar 

  • Grigorenko BL, Rogov AV, Nemukhin AV (2006) Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters. J Phys Chem B 110(9):4407–4412

    Article  CAS  Google Scholar 

  • Hammond C, Kartenbeck J, Helenius A (1992) Effects of dithiothreitol on beta-cop distribution and golgi to er membrane traffic. Mol Biol Cell 3:A35–A35

    Google Scholar 

  • Hansen JP, McDonald IR (2006) Theory of simple liquids. Academic Press, Amsterdam

    Google Scholar 

  • Hill TL, Morales MF (1951) On high energy phosphate bonds of biochemical interest. J Am Chem Soc 73(4):1656–1660

    Article  CAS  Google Scholar 

  • Hirata F (2003) Molecular theory of solvation. Kluwer, Dordrecht

    Google Scholar 

  • Hofmann KP, Zundel G (1974) Large hydration structure changes on hydrolyzing atp. Experientia 30(2):139–140

    Article  CAS  Google Scholar 

  • Hong J, Yoshida N, Chong S-H, Lee C, Ham S, Hirata F (2012) Elucidating the molecular origin of hydrolysis energy of pyrophosphate in water. J Chem Theory Comput 8:2239–2246

    Article  CAS  Google Scholar 

  • Kamerlin SCL, Warshel A (2009) On the energetics of atp hydrolysis in solution. J Phys Chem B 113(47):15692–15698

    Article  CAS  Google Scholar 

  • Kido K, Kasahara K, Yokogawa D, Sato H (2015) A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular ornstein-zernike self-consistent field approach. J Chem Phys 143(1):014103

    Article  Google Scholar 

  • Klaehn M, Rosta E, Warshel A (2006) On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. J Am Chem Soc 128(47):15310–15323

    Article  CAS  Google Scholar 

  • Kovalenko A, Hirata F (1998) Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem Phys Lett 290(1–3):237–244

    Article  CAS  Google Scholar 

  • Kovalenko A, Hirata F (1999) Self-consistent description of a metal-water interface by the kohn-sham density functional theory and the three-dimensional reference interaction site model. J Chem Phys 110(20):10095–10112

    Article  CAS  Google Scholar 

  • Kovalenko A, Hirata F (2001) First-principles realization of a van der waals-maxwell theory for water. Chem Phys Lett 349(5–6):496–502

    Article  CAS  Google Scholar 

  • Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. Adv Enzymol Rel S Bi 1:99–162

    CAS  Google Scholar 

  • Maruyama Y, Yoshida N, Tadano H, Takahashi D, Sato M, Hirata F (2014) Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT. J Comput Chem 35(18):1347–1355

    Article  CAS  Google Scholar 

  • Meyerhof O, Lohmann K (1932) Energetic exchange connections amongst the volume of phosphoric acetic acid in muscle extracts. Biochem Z 253:431–461

    CAS  Google Scholar 

  • Nishihara S, Otani M (2017) Hybrid solvation models for bulk, interface, and membrane: reference interaction site methods coupled with density functional theory. Phys Rev B 96(11)

    Google Scholar 

  • Sato H (2013) A modern solvation theory: quantum chemistry and statistical chemistry. Phys Chem Chem Phys 15(20):7450–7465

    Article  CAS  Google Scholar 

  • Sato H, Kovalenko A, Hirata F (2000) Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution. J Chem Phys 112(21):9463–9468

    Article  CAS  Google Scholar 

  • Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese F (2006) Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS). J Phys Chem A 110(6):2235–2245

    Article  CAS  Google Scholar 

  • Takahashi H, Kawashima Y, Nitta T, Matubayasi N (2005) A novel quantum mechanical/molecular mechanical approach to the free energy calculation for isomerization of glycine in aqueous solution. J Chem Phys 123(12):124504

    Article  Google Scholar 

  • Takahashi H, Matubayasi N, Nakahara M, Nitta T (2004) A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation. J Chem Phys 121(9):3989–3999

    Article  CAS  Google Scholar 

  • Takahashi H, Umino S, Miki Y, Ishizuka R, Maeda S, Morita A, Suzuki M, Matubayasi N (2017) Drastic compensation of electronic and solvation effects on atp hydrolysis revealed through large-scale QM/MM simulations combined with a theory of solutions. J Phys Chem B 121(10):2279–2287

    Article  CAS  Google Scholar 

  • Ten-no S, Hirata F, Kato S (1993) A hybrid approach for the solvent effect on the electronic-structure of a solute based on the RISM and hartree-fock equations. Chem Phys Lett 214(3–4):391–396

    Article  CAS  Google Scholar 

  • Ten-no S, Hirata F, Kato S (1994) Reference interaction site model self-consistent-field study for solvation effect on carbonyl-compounds in aqueous-solution. J Chem Phys 100(10):7443–7453

    Article  CAS  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093

    Article  CAS  Google Scholar 

  • Tomasi J, Persico M (1994) Molecular-interactions in solution—an overview of methods based on continuous distributions of the solvent. Chem Rev 94(7):2027–2094

    Article  CAS  Google Scholar 

  • Vinothkumar KR, Montgomery MG, Liu S, Walker JE (2016) Structure of the mitochondrial atp synthase from pichia angusta determined by electron cryo-microscopy. Proc Nat Acad Sci USA 113(45):12709–12714

    Article  CAS  Google Scholar 

  • Wang C, Huang WT, Liao JL (2015) QM/MM investigation of atp hydrolysis in aqueous solution. J Phys Chem B 119(9):3720–3726

    Article  CAS  Google Scholar 

  • Yamamoto T (2010) Preferred dissociative mechanism of phosphate monoester hydrolysis in low dielectric environments. Chem Phys Lett 500(4–6):263–266

    Article  CAS  Google Scholar 

  • Yokogawa D, Sato H, Sakaki S (2007) New generation of the reference interaction site model self-consistent field method: introduction of spatial electron density distribution to the solvation theory. J Chem Phys 126(24):244504

    Article  Google Scholar 

  • Yoshida N (2014) Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. J Chem Phys 140(21):214118

    Article  Google Scholar 

  • Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 113(4):873–886

    Article  CAS  Google Scholar 

  • Yoshida N, Kato S (2000) Molecular ornstein-zernike approach to the solvent effects on solute electronic structures in solution. J Chem Phys 113(12):4974–4984

    Article  CAS  Google Scholar 

  • Yoshida N, Kiyota Y, Hirata F (2011) The electronic-structure theory of a large-molecular system in solution: application to the intercalation of proflavine with solvated dna. J Mol Liq 159(1):83–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, N., Hirata, F. (2018). Statistical Mechanical Integral Equation Approach to Reveal the Solvation Effect on Hydrolysis Free Energy of ATP and Its Analogue. In: Suzuki, M. (eds) The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery. Springer, Singapore. https://doi.org/10.1007/978-981-10-8459-1_5

Download citation

Publish with us

Policies and ethics