Controlling the Motility of ATP-Driven Molecular Motors Using High Hydrostatic Pressure

Chapter

Abstract

High-pressure microscopy is a powerful technique for visualizing the effects of hydrostatic pressure on research targets. It can be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This chapter focuses on the use of high-pressure microscopy to measure the dynamic properties of molecular machines. We describe a high-pressure microscope that is optimized both for the best image formation and for stability under high hydrostatic pressure. The developed system allows us to visualize the motility of ATP-driven molecular motors under high pressure. The techniques described could be extended to study the detailed mechanism by which molecular machines work efficiently in collaboration with water molecules.

Keywords

High-pressure microscopy Molecular motors Kinesin F1-ATPase Single-molecule measurement 

Notes

Acknowledgements

We would like to thank Yoshifumi Kimura for developing a prototype of the high-pressure chamber for optical microscopy, Daichi Okuno and Hiroyuki Noji for the measurement of F1-ATPase, and Eiro Muneyuki, Shoichi Toyabe, Shou Furuike, Masahide Terazima, Yoshie Harada, and Akitoshi Seiyama for discussion. This work was supported by Grants-in-Aid for Scientific Research on the Innovative Area “Water plays the main role in ATP energy transfer, Group Leader; Prof. Makoto Suzuki” (Nos. 21118511 and 23118710), Grants-in-Aid for Scientific Research from MEXT (Nos. 16 K04908 and 17H05880), and the Takeda Science Foundation, Research Foundation for Opto-Science and Technology, Shimadzu Science Foundation, and Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering.

References

  1. Abe F (2015) Effects of high hydrostatic pressure on microbial cell membranes: structural and functional perspectives. Subcell Biochem 72:371–381.  https://doi.org/10.1007/978-94-017-9918-8_18CrossRefPubMedGoogle Scholar
  2. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K Jr (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321. https://doi.org/10.1016/j.cell.2007.05.020CrossRefGoogle Scholar
  3. Adachi K, Oiwa K, Yoshida M, Nishizaka T, Kinosita K Jr (2012) Controlled rotation of the F1-ATPase reveals differential and continuous binding changes for ATP synthesis. Nat Commun 3:1022. https://doi.org/10.1038/ncomms2026
  4. Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835CrossRefGoogle Scholar
  5. Bartlett DH (2002) Pressure effects on in vivo microbial processes Bba-Protein Struct M 1595:367–381CrossRefGoogle Scholar
  6. Block SM (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys J 92:2986–2995. https://doi.org/10.1529/biophysj.106.100677CrossRefGoogle Scholar
  7. Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochem Biophys Acta 1595:235–249PubMedGoogle Scholar
  8. Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866.  https://doi.org/10.1038/nrm2021CrossRefPubMedGoogle Scholar
  9. Cross RA (2016) Review: Mechanochemistry of the kinesin-1 ATPase. Biopolymers 105:476–482. https://doi.org/10.1002/bip.22862CrossRefGoogle Scholar
  10. Dzwolak W, Kato M, Taniguchi Y (2002) Fourier transform infrared spectroscopy in high-pressure studies on proteins. Biochem Biophys Acta 1595:131–144PubMedGoogle Scholar
  11. Fourme R, Girard E, Akasaka K (2012) High-pressure macromolecular crystallography and NMR: status, achievements and prospects. Curr Opin Struct Biol 22:636–642.  https://doi.org/10.1016/j.sbi.2012.07.007CrossRefPubMedGoogle Scholar
  12. Fujii S, Masanari-Fujii M, Kobayashi S, Kato C, Nishiyama M, Harada Y, Wakai S, Sambongi Y (2018) Commonly stabilized cytochromes c from deep-sea Shewanella and Pseudomonas. Biosci Biotechnol Biochem. https://doi.org/10.1080/09168451.2018.1448255
  13. Fujisawa T (2015) High pressure small-angle X-ray scattering. Subcell Biochem 72:663–675.  https://doi.org/10.1007/978-94-017-9918-8_30
  14. Furuike S, Adachi K, Sakaki N, Shimo-Kon R, Itoh H, Muneyuki E, Yoshida M, Kinosita K Jr (2008) Temperature dependence of the rotation and hydrolysis activities of F1-ATPase. Biophys J 95:761–770. https://doi.org/10.1529/biophysj.107.123307CrossRefGoogle Scholar
  15. Hayashi M, Nishiyama M, Kazayama Y, Toyota T, Harada Y, Takiguchi K (2016) Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure. Langmuir 32:3794–3802. https://doi.org/10.1021/acs.langmuir.6b00799CrossRefGoogle Scholar
  16. Ishii Y, Nishiyama M, Yanagida T (2004) Mechano-chemical coupling of molecular motors revealed by single molecule measurements. Curr Protein Pept Sci 5:81–87. https://doi.org/10.2174/1389203043486838CrossRefGoogle Scholar
  17. Ito Y, Ikeguchi M (2014) Molecular dynamics simulations of F1-ATPase. Adv Exp Med Biol 805:411–440.  https://doi.org/10.1007/978-3-319-02970-2_17CrossRefPubMedGoogle Scholar
  18. Kawaguchi K, Ishiwata S (2000) Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem Biophys Res Commun 272:895–899.  https://doi.org/10.1006/bbrc.2000.2856CrossRefPubMedGoogle Scholar
  19. Kitahara R (2015) High-Pressure NMR spectroscopy reveals functional sub-states of ubiquitin and ubiquitin-like proteins. Subcell Biochem 72:199–214.  https://doi.org/10.1007/978-94-017-9918-8_10CrossRefPubMedGoogle Scholar
  20. Kojima H, Muto E, Higuchi H, Yanagida T (1997) Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J 73:2012–2022.  https://doi.org/10.1016/S0006-3495(97)78231-6CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kuffel A, Zielkiewicz J (2013) Properties of water in the region between a tubulin dimer and a single motor head of kinesin. Phys Chem Chem Phys 15:4527–4537.  https://doi.org/10.1039/c3cp43828gCrossRefPubMedGoogle Scholar
  22. Luong TQ, Kapoor S, Winter R (2015) Pressure-A gateway to fundamental insights into protein solvation. Dyn Func Chemphyschem 16:3555–3571CrossRefGoogle Scholar
  23. Maeno A, Akasaka K (2015) High-pressure fluorescence spectroscopy. Subcell Biochem 72:687–705.  https://doi.org/10.1007/978-94-017-9918-8_32
  24. Mazumdar M, Cross RA (1998) Engineering a lever into the kinesin neck. J Biol Chem 273:29352–29359. https://doi.org/10.1074/jbc.273.45.29352CrossRefGoogle Scholar
  25. Miyamoto Y, Muto E, Mashimo T, Iwane AH, Yoshiya I, Yanagida T (2000) Direct inhibition of microtubule-based kinesin motility by local anesthetics. Biophys J 78:940–949.  https://doi.org/10.1016/S0006-3495(00)76651-3CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins-Struct Func Genet 24:81–91CrossRefGoogle Scholar
  27. Nishiyama M (2017) High-pressure microscopy for tracking dynamic properties of molecular machines. Biophys Chem.  https://doi.org/10.1016/j.bpc.2017.03.010CrossRefPubMedGoogle Scholar
  28. Nishiyama M, Higuchi H, Ishii Y, Taniguchi Y, Yanagida T (2003) Single molecule processes on the stepwise movement of ATP-driven molecular motors. Biosystems 71:145–156.  https://doi.org/10.1016/s0303-2647(03)00122-9CrossRefPubMedGoogle Scholar
  29. Nishiyama M, Higuchi H, Yanagida T (2002) Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat Cell Biol 4:790–797.  https://doi.org/10.1038/ncb857CrossRefPubMedGoogle Scholar
  30. Nishiyama M, Kimura Y, Nishiyama Y, Terazima M (2009) Pressure-induced changes in the structure and function of the kinesin-microtubule complex. Biophys J 96:1142–1150.  https://doi.org/10.1016/j.bpj.2008.10.023CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nishiyama M, Kojima S (2012) Bacterial motility measured by a miniature chamber for high-pressure microscopy. Int J Mol Sci 13:9225–9239.  https://doi.org/10.3390/ijms13079225CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nishiyama M, Muto E, Inoue Y, Yanagida T, Higuchi H (2001) Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nat Cell Biol 3:425–428.  https://doi.org/10.1038/35070116CrossRefPubMedGoogle Scholar
  33. Nishiyama M, Sowa Y (2012) Microscopic analysis of bacterial motility at high pressure. Biophys J 102:1872–1880.  https://doi.org/10.1016/j.bpj.2012.03.033CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nishiyama M, Sowa Y (2013) Manipulation of cell motility with water molecules in living cells Kagaku. Jpn J 68:33–38Google Scholar
  35. Nishiyama M, Sowa Y, Kimura Y, Homma M, Ishijima A, Terazima M (2013) High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor. J Bacteriol 195:1809–1814.  https://doi.org/10.1128/jb.02139-12CrossRefPubMedPubMedCentralGoogle Scholar
  36. Noji H, Ueno H, McMillan DGG (2017) Catalytic robustness and torque generation of the F1-ATPase. Biophys Rev 9:103–118  https://doi.org/10.1007/s12551-017-0262-xCrossRefGoogle Scholar
  37. Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302.  https://doi.org/10.1038/386299a0CrossRefGoogle Scholar
  38. Okuno D, Nishiyama M, Noji H (2013) Single-molecule analysis of the rotation of F1-ATPase under high hydrostatic pressure. Biophys J 105:1635–1642.  https://doi.org/10.1016/j.bpj.2013.08.036CrossRefPubMedPubMedCentralGoogle Scholar
  39. Payne VA, Matubayasi N, Murphy LR, Levy RM (1997) Monte Carlo study of the effect of pressure on hydrophobic association. J Phys Chem B 101:2054–2060.  https://doi.org/10.1021/jp962977pCrossRefGoogle Scholar
  40. Roche J, Dellarole M, Royer CA, Roumestand C (2015) Exploring the protein folding pathway with high-pressure NMR: steady-state and kinetics studies. Subcell Biochem 72:261–278.  https://doi.org/10.1007/978-94-017-9918-8_13CrossRefPubMedGoogle Scholar
  41. Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390.  https://doi.org/10.1038/41111CrossRefPubMedGoogle Scholar
  42. Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M (2003) Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40° substep rotation. Proc Natl Acad Sci U S A 100:14731–14736.  https://doi.org/10.1073/pnas.2434983100CrossRefPubMedPubMedCentralGoogle Scholar
  43. Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773–784. https://doi.org/10.1016/0092-8674(94)90060-4CrossRefGoogle Scholar
  44. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727.  https://doi.org/10.1038/365721a0CrossRefPubMedPubMedCentralGoogle Scholar
  45. Taniguchi Y, Nishiyama M, Ishii Y, Yanagida T (2005) Entropy rectifies the Brownian steps of kinesin. Nat Chem Biol 1:342–347.  https://doi.org/10.1038/nchembio741CrossRefPubMedGoogle Scholar
  46. Toyabe S, Watanabe-Nakayama T, Okamoto T, Kudo S, Muneyuki E (2011) Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc Natl Acad Sci U S A 108:17951–17956.  https://doi.org/10.1073/pnas.1106787108CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95CrossRefGoogle Scholar
  48. Vass H, Black SL, Herzig EM, Ward FB, Clegg PS, Allen RJ (2010) A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure. Rev Sci Instrum 81  https://doi.org/10.1063/1.3427224CrossRefGoogle Scholar
  49. Wakai N, Takemura K, Morita T, Kitao A (2014) Mechanism of deep-sea fish alpha-actin pressure tolerance investigated by molecular dynamics simulations. PLoS ONE 9:e85852.  https://doi.org/10.1371/journal.pone.0085852CrossRefPubMedPubMedCentralGoogle Scholar
  50. Watanabe N (2015) High pressure macromolecular crystallography. Subcell Biochem 72:677–686  https://doi.org/10.1007/978-94-017-9918-8_31
  51. Watanabe TM et al (2013) Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure. PLoS ONE 8  https://doi.org/10.1371/journal.pone.0073212
  52. Watanabe-Nakayama T, Toyabe S, Kudo S, Sugiyama S, Yoshida M, Muneyuki E (2008) Effect of external torque on the ATP-driven rotation of F1-ATPase. Biochem Biophys Res Commun 366:951–957.  https://doi.org/10.1016/j.bbrc.2007.12.049CrossRefGoogle Scholar
  53. Webb JN, Webb SD, Cleland JL, Carpenter JF, Randolph TW (2001) Partial molar volume, surface area, and hydration changes for equilibrium unfolding and formation of aggregation transition state: high-pressure and cosolute studies on recombinant human IFN-gamma. Proc Natl Acad Sci U S A 98:7259–7264.  https://doi.org/10.1073/pnas.131194798CrossRefPubMedPubMedCentralGoogle Scholar
  54. Winter R (2002) Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochem Biophys Acta 1595:160–184PubMedGoogle Scholar
  55. Winter R (2015) Pressure effects on the intermolecular interaction potential of condensed protein solutions. Subcell Biochem 72:151–176.  https://doi.org/10.1007/978-94-017-9918-8_8CrossRefPubMedGoogle Scholar
  56. Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904. https://doi.org/10.1038/35073513CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.The HAKUBI Center for Advanced Research/Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations