Functioning Mechanism of ATP-Driven Proteins Inferred on the Basis of Water-Entropy Effect

  • Masahiro Kinoshita


There is a class of proteins called “motor proteins” or “protein machineries” which utilizes the ATP hydrolysis cycle: binding of ATP to a protein, hydrolysis of ATP, and dissociation of ADP and Pi from the protein. In the literature, the functioning mechanism of an ATP-driven protein has been discussed using the concept that it does work by utilizing the chemical energy stored in an ATP molecule or the free energy of ATP hydrolysis. In this chapter, we present a completely different view and argue that a protein is involved in an irreversible chemical reaction accompanying a decrease in system free energy, ATP hydrolysis, and during each hydrolysis cycle the protein undergoes a series of structural changes, leading to the exhibition of high function. The force which makes myosin move along F-actin, for example, is generated not by ATP but by water. In particular, the entropic force originating from the translational displacement of water molecules in the system plays a pivotal role. The concept of chemical–mechanical energy conversion is physically irrelevant.


ATP-driven protein ATP hydrolysis cycle Actomyosin Unidirectional movement Water Entropic force 


  1. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita M Jr (2007) Cell 130:309CrossRefGoogle Scholar
  2. Amano K, Yoshidome T, Iwaki M, Suzuki M, Kinoshita M (2010) J Chem Phys 133:045103CrossRefGoogle Scholar
  3. Asakura S, Oosawa F (1954) J Chem Phys 22:1255CrossRefGoogle Scholar
  4. Asakura S, Oosawa F (1958) J Polym Sci 33:183CrossRefGoogle Scholar
  5. Coureux P, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) Nature 425:419CrossRefGoogle Scholar
  6. Coureux P, Sweeney HL, Houdusse A (2004) EMBO J 23:4527CrossRefGoogle Scholar
  7. Dinsmore AD, Yodh AG, Pine DJ (1996) Nature 383:239CrossRefGoogle Scholar
  8. Hansen J-P, McDonald LR (2006) Theory of simple liquids, 3rd edn. Academic, LondonGoogle Scholar
  9. Harano Y, Yoshidome T, Kinoshita M (2008) J Chem Phys 129:145103CrossRefGoogle Scholar
  10. Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M (2014) Nucleic Acids Res 42:6861CrossRefGoogle Scholar
  11. Hayashi T, Oshima H, Yasuda S, Kinoshita M (2015) J Phys Chem B 119:14120CrossRefGoogle Scholar
  12. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates Inc, MassachusettsGoogle Scholar
  13. Iwaki M et al (unpublished results)Google Scholar
  14. Iwaki M, Marcucci L, Togashi Y, Yanagida T (2013) Single molecule and collective dynamics of motor protein coupled with mechano-sensitive chemical reaction. In: Mikhailov AS (ed) Engineering of chemical complexity. World Scientific Publishing, SingaporeGoogle Scholar
  15. Iwaki M, Iwane AH, Ikezaki K, Yanagida T (2015) Nano Lett 15:2456CrossRefGoogle Scholar
  16. Iwaki M, Wickham SF, Ikezaki K, Yanagida T, Shih WM (2016) Nat Commun 7:13715CrossRefGoogle Scholar
  17. Katoh T, Morita F (1996) J Biochem 120:189CrossRefGoogle Scholar
  18. Kinoshita M (2002) J Chem Phys 116:3493CrossRefGoogle Scholar
  19. Kinoshita M (2006) Chem Eng Sci 61:2150CrossRefGoogle Scholar
  20. Kinoshita M (2008) J Chem Phys 128:024507CrossRefGoogle Scholar
  21. Kinoshita M (2013) Biophys Rev 5:283CrossRefGoogle Scholar
  22. Kinoshita M (2016) Mechanism of functional expression of the molecular machines. Springer briefs in molecular science. Springer, ISBN: 978-981-10-1484-0 (2016)CrossRefGoogle Scholar
  23. Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) Nature 397:129CrossRefGoogle Scholar
  24. Kitamura K, Tokunaga M, Esaki S, Iwane AH, Yanagida T (2005) Biophysics 1:1CrossRefGoogle Scholar
  25. Kodama T (1985) Physiol Rev 65:467CrossRefGoogle Scholar
  26. Kodera N et al (unpublished results)Google Scholar
  27. Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T (2008) Nat Struct Mol Biol 15:1326CrossRefGoogle Scholar
  28. Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H, Furutani-Umezu N, Nakajima J, Noguchi TQP, Nagasaki A, Tokuraku K, Uyeda TQP (2016) Sci Rep 6:35449CrossRefGoogle Scholar
  29. Oda K, Kodama R, Yoshidome T, Yamanaka M, Sambongi Y, Kinoshita M (2011) J Chem Phys 134:025101CrossRefGoogle Scholar
  30. Okada T, Tanaka H, Iwane AH, Kitamura K, Ikebe M, Yanagida T (2007) Biochem Biophys Res Commun 354:379CrossRefGoogle Scholar
  31. Okuno D, Fujisawa R, Iino R, Hirono-Hara Y, Imamura H, Noji H (2008) Proc Natl Acad Sci USA 105:20722CrossRefGoogle Scholar
  32. Oshima H, Kinoshita M (2013) J Chem Phys 138:245101CrossRefGoogle Scholar
  33. Oshima H, Kinoshita M (2015) J Chem Phys 142:145103CrossRefGoogle Scholar
  34. Oshima H, Hayashi T, Kinoshita M (2016) Biophys J 110:2496CrossRefGoogle Scholar
  35. Soda K (1993) J Phys Soc Jpn 62:1782CrossRefGoogle Scholar
  36. Yanagida T, Esaki S, Iwane AH, Inoue Y, Ishijima A, Kitamura K, Tanaka H, Tokunaga M (2000) Phil Trans R Soc Lond B 355:441CrossRefGoogle Scholar
  37. Yoshidome T, Kinoshita M (2012) Phys Chem Chem Phys 14:14554CrossRefGoogle Scholar
  38. Yoshidome T, Kinoshita M, Hirota S, Baden N, Terazima M (2008) J Chem Phys 128:225104CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Advanced Energy, Kyoto UniversityUjiJapan

Personalised recommendations