Skip to main content

Statistical Thermodynamics on the Binding of Biomolecules

  • Chapter
  • First Online:
  • 594 Accesses

Abstract

The binding of biomolecules in water plays an essential role in the expression of life phenomena. In this chapter, we show that the underlying mechanism of this binding can be clarified by calculating the thermodynamic quantities based on statistical mechanics. The three types of biomolecule binding are analyzed within a theoretical framework: (I) the binding between a soft peptide (a portion of protein) and a rigid RNA, (II) the one-to-many molecular recognition by a soft peptide accompanying target-dependent structuring, and (III) the actin–myosin binding. Types (I) and (II) are related to pharmacological applications, and type (III) is an elementary process for muscle contraction. These apparently different binding processes share the same underlying mechanism, which can be characterized using a unified theoretical framework. The binding is driven by a large gain of water entropy in the entire system. This gain primarily originates from the reduction of “water crowding,” which is attributed to a large overlap of the biomolecule excluded volumes (EV) upon binding, referred to as the entropic EV effect. Such a large EV overlap is achieved by the formation of sufficiently high shape complementarity on an atomic level within the binding interface. The electrostatic complementarity within the interface is ensured as much as possible to compensate for the energetic loss due to dehydration. Although the elimination of biomolecule fluctuations within the binding interface causes a large conformational entropy loss, it is surpassed by these complementarity formations when the binding is accomplished.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, T. (2018). Statistical Thermodynamics on the Binding of Biomolecules. In: Suzuki, M. (eds) The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery. Springer, Singapore. https://doi.org/10.1007/978-981-10-8459-1_13

Download citation

Publish with us

Policies and ethics