Statistical Thermodynamics on the Binding of Biomolecules

Chapter

Abstract

The binding of biomolecules in water plays an essential role in the expression of life phenomena. In this chapter, we show that the underlying mechanism of this binding can be clarified by calculating the thermodynamic quantities based on statistical mechanics. The three types of biomolecule binding are analyzed within a theoretical framework: (I) the binding between a soft peptide (a portion of protein) and a rigid RNA, (II) the one-to-many molecular recognition by a soft peptide accompanying target-dependent structuring, and (III) the actin–myosin binding. Types (I) and (II) are related to pharmacological applications, and type (III) is an elementary process for muscle contraction. These apparently different binding processes share the same underlying mechanism, which can be characterized using a unified theoretical framework. The binding is driven by a large gain of water entropy in the entire system. This gain primarily originates from the reduction of “water crowding,” which is attributed to a large overlap of the biomolecule excluded volumes (EV) upon binding, referred to as the entropic EV effect. Such a large EV overlap is achieved by the formation of sufficiently high shape complementarity on an atomic level within the binding interface. The electrostatic complementarity within the interface is ensured as much as possible to compensate for the energetic loss due to dehydration. Although the elimination of biomolecule fluctuations within the binding interface causes a large conformational entropy loss, it is surpassed by these complementarity formations when the binding is accomplished.

Keywords

Binding free energy Prion protein RNA aptamer p53 protein Actomyosin 

References

  1. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C (2002) Mol Cell 10:523CrossRefGoogle Scholar
  2. Beglov D, Roux B (1995) J Chem Phys 103:360CrossRefGoogle Scholar
  3. Beglov D, Roux B (1996) J Chem Phys 104:8678CrossRefGoogle Scholar
  4. Cann NM, Patey GN (1997) J Chem Phys 106:8165CrossRefGoogle Scholar
  5. Chiba S, Harano Y, Roth R, Kinoshita M, Sakurai M (2012) J Comput Chem 33:550CrossRefGoogle Scholar
  6. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21:150CrossRefGoogle Scholar
  7. Coureux P-D, Sweeney HL, Houdusse A (2004) EMBO J 23:4527CrossRefGoogle Scholar
  8. Doig AJ, Sternberg MJE (1995) Protein Sci 4:2247CrossRefGoogle Scholar
  9. Fischer E (1894) Ber Dtsch Chem Ges 27:2985CrossRefGoogle Scholar
  10. Fitter J (2003) Biophys J 84:3924CrossRefGoogle Scholar
  11. Gilson MK, Given JA, Bush BL, McCammon JA (1997) Biophys J 72:1047CrossRefGoogle Scholar
  12. Hansen J-P, McDonald LR (2006) Theory of simple liquids, 3rd ed. Academic Press, LondonCrossRefGoogle Scholar
  13. Harano Y, Kinoshita M (2005) Biophys J 89:2701CrossRefGoogle Scholar
  14. Harano Y, Yoshidome T, Kinoshita M (2008) J Chem Phys 129:145103CrossRefGoogle Scholar
  15. Hayashi T, Kinoshita M (2016) Phys Chem Chem Phys 18:32406CrossRefGoogle Scholar
  16. Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M (2014) Nucleic Acids Res 42:6861CrossRefGoogle Scholar
  17. Hayashi T, Oshima H, Yasuda S, Kinoshita M (2015) J Phys Chem B 119:14120CrossRefGoogle Scholar
  18. Hayashi T, Oshima H, Harano Y, Kinoshita M (2016) J Phys Condens Matter 28:344003CrossRefGoogle Scholar
  19. Hayashi T, Yasuda S, Škrbić T, Giacometti A, Kinoshita M (2017) J Chem Phys 147, 125102Google Scholar
  20. Hoe KK, Verma CS, Lane DP (2014) Nat Rev Drug Discovery 13:217–236CrossRefGoogle Scholar
  21. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712CrossRefGoogle Scholar
  22. Hsu W-L, Oldfield CJ, Xue B, Meng J, Huang F, Romero P, Uversky VN, Dunker AK (2013) Protein Sci 22:258CrossRefGoogle Scholar
  23. Huang N, Jacobson MP (2007) Curr. Opin. Drug Discovery Dev. 10:325Google Scholar
  24. Imai T, Harano Y, Kinoshita M, Kovalenko A, Hirata F (2007) J Chem Phys 126:225102CrossRefGoogle Scholar
  25. Karagiannis P, Ishii Y, Yanagida T (2014) Chem Rev 114:3318CrossRefGoogle Scholar
  26. Katoh T, Morita F (1996) J Biochem 120:189CrossRefGoogle Scholar
  27. Keskin O, Tuncbag N, Gursoy A (2016) Chem Rev 116:4884CrossRefGoogle Scholar
  28. Kinoshita M (2008) J Chem Phys 128:024507CrossRefGoogle Scholar
  29. Kinoshita M (2013) Biophys. Rev. 5:283CrossRefGoogle Scholar
  30. Kinoshita M, Bérard DR (1996) J Comput Phys 124:230CrossRefGoogle Scholar
  31. Kinoshita M, Yoshidome T (2009) J Chem Phys 130:144705CrossRefGoogle Scholar
  32. König P-M, Roth R, Mecke KR (2004) Phys Rev Lett 93:160601CrossRefGoogle Scholar
  33. Koshland DE Jr (1958) Proc Natl Acad Sci USA 44:98CrossRefGoogle Scholar
  34. Kovalenko A, Hirata F (1999) J Chem Phys 110:10095CrossRefGoogle Scholar
  35. Kusalik PG, Patey GN (1988a) J Chem Phys 88:7715Google Scholar
  36. Kusalik PG, Patey GN (1988b) J Mol Phys 65:1105Google Scholar
  37. Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49:5851CrossRefGoogle Scholar
  38. Lorenz M, Holmes KC (2010) Proc Natl Acad Sci USA 107:12529CrossRefGoogle Scholar
  39. Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble MEM, Gamblin SJ, Johnson LN (2002) Biochemistry 41:15625CrossRefGoogle Scholar
  40. Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) J Chem Theory Comput 6:607CrossRefGoogle Scholar
  41. Mashima T, Matsugami A, Nishikawa F, Nishikawa S, Katahira M (2009) Nucleic Acids Res 37:6249CrossRefGoogle Scholar
  42. Mashima T, Nishikawa F, Kamatari YO, Fujiwara H, Saimura M, Nagata T, Kodaki T, Nishikawa S, Kuwata K, Katahira M (2013) Nucleic Acids Res 41:1355CrossRefGoogle Scholar
  43. Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand R, Sanchez NJ, Zeleznik-Le Z Ronai, Zhou M-M (2004) Mol Cell 13:251CrossRefGoogle Scholar
  44. Okazaki K, Sato T, Takano M (2012) J Am Chem Soc 134:8918CrossRefGoogle Scholar
  45. Oshima H, Kinoshita M (2015) J Chem Phys 142:145103CrossRefGoogle Scholar
  46. Oshima H, Kinoshita M (2016) J Comput Chem 37:712CrossRefGoogle Scholar
  47. Oshima H, Yasuda S, Yoshidome T, Ikeguchi M, Kinoshita M (2011) Phys Chem Chem Phys 13:16236CrossRefGoogle Scholar
  48. Oshima H, Hayashi T, Kinoshita M (2016) Biophys J 110:2496CrossRefGoogle Scholar
  49. Preller M, Holmes KC (2013) Cytoskeleton (Hoboken) 70:651CrossRefGoogle Scholar
  50. Ratkova EL, Palmer DS, Fedorov MV (2015) Chem Rev 115:6312CrossRefGoogle Scholar
  51. Roth R, Harano Y, Kinoshita M (2006) Phys Rev Lett 97:078101CrossRefGoogle Scholar
  52. Rustandi RR, Drohat AC, Baldisseri DM, Wilder PT, Weber DJ (1998) Biochemistry 37:1951CrossRefGoogle Scholar
  53. Shirts MR, Mobley DL, Brown SP (2010) Free energy calculations in structure-based drug design. In: Kenneth DR, Merz M, Reynolds CH (eds) Structure based drug design. Cambridge University Press, New YorkGoogle Scholar
  54. Sweeney HL, Houdusse A (2010) Annu Rev Biophys 39:539CrossRefGoogle Scholar
  55. Takács B, O’Neall-Hennessey E, Hetényi C, Kardos J, Szent-Györgyi AG, Kovács M (2011) Biophys Rev 5:283Google Scholar
  56. Truchon J-F, Pettitt BM, Labute P (2014) J Chem Theory Comput 10:934CrossRefGoogle Scholar
  57. Várkuti BH, Yang Z, Kintses B, Erdélyi P, Bárdos-Nagy I, Kovács AL, Hári P, Kellermayer M, Vellai T, Málnási-Csizmadia A (2012) Nat Struct Mol Biol 19:299CrossRefGoogle Scholar
  58. Várkuti BH, Yang Z, Málnási-Csizmadia A (2015) J Biol Chem 290:1679CrossRefGoogle Scholar
  59. Vogelstein B, Lane D, Levine AJ (2000) Nature 408:307CrossRefGoogle Scholar
  60. Yoshidome T, Kinoshita M (2012) Phys Chem Chem Phys 14:14554CrossRefGoogle Scholar
  61. Yoshidome T, Kinoshita M, Hirota S, Baden N, Terazima M (2008) J Chem Phys 128:225104CrossRefGoogle Scholar
  62. Zhou H-X, Gilson MK (2009) Chem Rev 109:4092CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Advanced EnergyKyoto UniversityUji, KyotoJapan

Personalised recommendations