Skip to main content

Oligomerization of Retrovirus Integrases

  • Chapter
  • First Online:
Virus Protein and Nucleoprotein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 88))

Abstract

Integration of the reverse-transcribed viral cDNA into the host’s genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric ‘intasome’ complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host’s DNA. IN also forms a complex with host proteins, which guides the intasome to the host’s chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, Yoshimura A, Tada S, Nakayama T, Murofushi H, Okumura K, Takeda S, Horikoshi M, Seki M, Enomoto T (2011) The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 286(35):30504–30512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abram ME, Hluhanich RM, Goodman DD, Andreatta KN, Margot NA, Ye L, Niedziela-Majka A, Barnes TL, Novikov N, Chen X, Svarovskaia ES, McColl DJ, White KL, Miller MD (2013) Impact of primary elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrob Agents Chemother 57(6):2654–2663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aiyer S, Swapna GV, Malani N, Aramini JM, Schneider WM, Plumb MR, Ghanem M, Larue RC, Sharma A, Studamire B, Kvaratskhelia M, Bushman FD, Montelione GT, Roth MJ (2014) Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res 42(9):5917–5928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrake MD, Skalka AM (1995) Multimerization determinants reside in both the catalytic core and C terminus of avian sarcoma virus integrase. J Biol Chem 270(49):29299–29306

    CAS  PubMed  Google Scholar 

  • Andrake MD, Skalka AM (2015) Retroviral Integrase: then and Now. Annu Rev Virol 2(1):241–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anstett K, Mesplede T, Oliveira M, Cutillas V, Wainberg MA (2015) HIV-1 dolutegravir-resistance substitution R263K cannot co-exist in combination with many classical integrase inhibitor resistance substitutions. J Virol 89:4681–4684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan M, Yant SR, Tsai L, O’Sullivan C, Bam RA, Tsai A, Niedziela-Majka A, Stray KM, Sakowicz R, Cihlar T (2013) Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 8(9):e74163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballandras A, Moreau K, Robert X, Confort MP, Merceron R, Haser R, Ronfort C, Gouet P (2011) A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly. PLoS One 6(8):e23032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballandras-Colas A, Brown M, Cook NJ, Dewdney TG, Demeler B, Cherepanov P, Lyumkis D, Engelman AN (2016) Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530(7590):358–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballandras-Colas A, Maskell DP, Serrao E, Locke J, Swuec P, Jonsson SR, Kotecha A, Cook NJ, Pye VE, Taylor IA, Andresdottir V, Engelman AN, Costa A, Cherepanov P (2017) A supramolecular assembly mediates lentiviral DNA integration. Science 355(6320):93–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao KK, Wang H, Miller JK, Erie DA, Skalka AM, Wong I (2003) Functional oligomeric state of avian sarcoma virus integrase. J Biol Chem 278(2):1323–1327

    CAS  PubMed  Google Scholar 

  • Barr SD, Leipzig J, Shinn P, Ecker JR, Bushman FD (2005) Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J Virol 79(18):12035–12044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P, Calmels C, Naughtin M, Leon O, Skalka AM, Ruff M, Lavigne M, Andreola ML, Parissi V (2015) Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology 12:13

    PubMed  PubMed Central  Google Scholar 

  • Bera S, Vora AC, Chiu R, Heyduk T, Grandgenett DP (2005) Synaptic complex formation of two retrovirus DNA attachment sites by integrase: a fluorescence energy transfer study. Biochemistry 44(46):15106–15114

    CAS  PubMed  Google Scholar 

  • Bera S, Pandey KK, Vora AC, Grandgenett DP (2009) Molecular Interactions between HIV-1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration. J Mol Biol 389(1):183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bischerour J, Leh H, Deprez E, Brochon JC, Mouscadet JF (2003) Disulfide-linked integrase oligomers involving C280 residues are formed in vitro and in vivo but are not essential for human immunodeficiency virus replication. J Virol 77(1):135–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bojja RS, Andrake MD, Weigand S, Merkel G, Yarychkivska O, Henderson A, Kummerling M, Skalka AM (2011) Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. J Biol Chem 286(19):17047–17059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrenberghs D, Dirix L, De Wit F, Rocha S, Blokken J, De Houwer S, Gijsbers R, Christ F, Hofkens J, Hendrix J, Debyser Z (2016) Dynamic oligomerization of integrase orchestrates HIV nuclear entry. Sci Rep 6:36485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bujacz G, Jaskolski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA, Skalka AM (1995) High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J Mol Biol 253(2):333–346

    CAS  PubMed  Google Scholar 

  • Bujacz G, Alexandratos J, Wlodawer A, Merkel G, Andrake M, Katz RA, Skalka AM (1997) Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J Biol Chem 272(29):18161–18168

    CAS  PubMed  Google Scholar 

  • Bushman FD, Engelman A, Palmer I, Wingfield P, Craigie R (1993) Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc Natl Acad Sci U S A 90(8):3428–3432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4(7):567–577

    CAS  PubMed  Google Scholar 

  • Chen H, Wei SQ, Engelman A (1999) Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J Biol Chem 274(24):17358–17364

    CAS  PubMed  Google Scholar 

  • Chen HC, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24(1):47–54

    CAS  PubMed  Google Scholar 

  • Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z (2003) HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278(1):372–381

    CAS  PubMed  Google Scholar 

  • Cherepanov P, Devroe E, Silver PA, Engelman A (2004) Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 279(47):48883–48892

    CAS  PubMed  Google Scholar 

  • Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 102:17308–17313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu R, Grandgenett DP (2003) Molecular and genetic determinants of Rous sarcoma virus integrase for concerted DNA integration. J Virol 77(11):6482–6492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow SA, Vincent KA, Ellison V, Brown PO (1992) Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255(5045):723–726

    CAS  PubMed  Google Scholar 

  • Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6(6):442–448

    CAS  PubMed  Google Scholar 

  • Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    CAS  PubMed  Google Scholar 

  • Coleman J, Eaton S, Merkel G, Skalka AM, Laue T (1999) Characterization of the self association of Avian sarcoma virus integrase by analytical ultracentrifugation. J Biol Chem 274(46):32842–32846

    CAS  PubMed  Google Scholar 

  • Crowe BL, Larue RC, Yuan C, Hess S, Kvaratskhelia M, Foster MP (2016) Structure of the Brd4 ET domain bound to a C-terminal motif from gamma-retroviral integrases reveals a conserved mechanism of interaction. Proc Natl Acad Sci U S A 113(8):2086–2091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dar MJ, Monel B, Krishnan L, Shun MC, Di Nunzio F, Helland DE, Engelman A (2009) Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase. Retrovirology 6:94

    PubMed  PubMed Central  Google Scholar 

  • Davies DR, Goryshin IY, Reznikoff WS, Rayment I (2000) Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289(5476):77–85

    CAS  PubMed  Google Scholar 

  • De Rijck J, Bartholomeeusen K, Ceulemans H, Debyser Z, Gijsbers R (2010) High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res 38(18):6135–6147

    PubMed  PubMed Central  Google Scholar 

  • De Rijck J, de Kogel C, Demeulemeester J, Vets S, El Ashkar S, Malani N, Bushman FD, Landuyt B, Husson SJ, Busschots K, Gijsbers R, Debyser Z (2013) The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell Rep 5(4):886–894

    PubMed  PubMed Central  Google Scholar 

  • Demeulemeester J, De Rijck J, Gijsbers R, Debyser Z (2015) Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection. Bioessays 37(11):1202–1214

    PubMed  PubMed Central  Google Scholar 

  • Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, Vets S, Van Remoortel B, Hofkens J, De Rijck J, Hendrix J, Bannert N, Gijsbers R, Christ F, Debyser Z (2013) LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 10:57

    PubMed  PubMed Central  Google Scholar 

  • Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266(5193):1981–1986

    CAS  PubMed  Google Scholar 

  • Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hard K (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Biol 2(9):807–810

    CAS  PubMed  Google Scholar 

  • El Ashkar S, De Rijck J, Demeulemeester J, Vets S, Madlala P, Cermakova K, Debyser Z, Gijsbers R (2014) BET-independent MLV-based vectors target away from promoters and regulatory elements. Mol Ther Nucleic Acids 3:e179

    PubMed  PubMed Central  Google Scholar 

  • Engelman A (1999) In vivo analysis of retroviral integrase structure and function. Adv Virus Res 52:411–426

    CAS  PubMed  Google Scholar 

  • Engelman A, Cherepanov P (2014) Retroviral integrase structure and DNA recombination mechanism. Microbiol Spectr 2(6):1–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman AN, Cherepanov P (2017) Retroviral intasomes arising. Curr Opin Struct Biol 47:23–29

    CAS  PubMed  Google Scholar 

  • Engelman A, Bushman FD, Craigie R (1993) Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J 12(8):3269–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Sharma A, Slaughter A, Jena N, Koh Y, Shkriabai N, Larue RC, Patel PA, Mitsuya H, Kessl JJ, Engelman A, Fuchs JR, Kvaratskhelia M (2013) The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 288(22):15813–15820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M (2015) HIV-1 integrase multimerization as a therapeutic target. Curr Top Microbiol Immunol. https://doi.org/10.1007/82_2015_439

    Google Scholar 

  • Gao K, Butler SL, Bushman F (2001) Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. EMBO J 20(13):3565–3576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grandgenett DP, Vora AC, Schiff RD (1978) A 32,000-dalton nucleic acid-binding protein from avian retravirus cores possesses DNA endonuclease activity. Virology 89(1):119–132

    CAS  PubMed  Google Scholar 

  • Grandgenett DP, Pandey KK, Bera S, Aihara H (2015) Multifunctional facets of retrovirus integrase. World J Biol Chem 6(3):83–94

    PubMed  PubMed Central  Google Scholar 

  • Grobler J, McKemma PM, Ly S, Stillmock KA, Bahnck CM, Danovich RM, Dornadula G, Hazuda D, Miller MD (2009) HIV integrase inhibitor dissociation rates correlate with efficacy in vitro. Antivir Ther 14(Supplement 1):A27

    Google Scholar 

  • Guan R, Aiyer S, Cote ML, Xiao R, Jiang M, Acton TB, Roth MJ, Montelione GT (2017) X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition. Proteins 85:647–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Curtis JE, Krueger S, Hwang Y, Cherepanov P, Bushman FD, Van Duyne GD (2012) Solution conformations of prototype foamy virus integrase and its stable synaptic complex with U5 viral DNA. Structure 20:1918–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SS, Maetzig T, Maertens GN, Sharif A, Rothe M, Weidner-Glunde M, Galla M, Schambach A, Cherepanov P, Schulz TF (2013) Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J Virol 87(23):12721–12736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Turkki V, Sherrill-Mix S, Hwang Y, Eilers G, Taylor L, McDanal C, Wang P, Temelkoff D, Nolte RT, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD (2016) Structural basis for inhibitor-induced aggregation of HIV integrase. PLoS Biol 14(12):e1002584

    PubMed  PubMed Central  Google Scholar 

  • Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010a) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464(7286):232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010b) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107(46):20057–20062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hare S, Maertens GN, Cherepanov P (2012) 3′-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31(13):3020–3028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, Tomberlin GH, Carter HL 3rd, Broderick T, Sigethy S, Seki T, Kobayashi M, Underwood MR (2011) Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother 55(10):4552–4559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton R, Mumm SR, Grandgenett DP (1991) Phosphorylation of the avian retrovirus integration protein and proteolytic processing of its carboxyl terminus. J Virol 65(3):1141–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh FK, Kulaeva OI, Patel SS, Dyer PN, Luger K, Reinberg D, Studitsky VM (2013) Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A 110(19):7654–7659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KS, Coleman J, Merkel GW, Laue TM, Skalka AM (1992) Retroviral integrase functions as a multimer and can turn over catalytically. J Biol Chem 267(23):16037–16040

    CAS  PubMed  Google Scholar 

  • Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, Wang W, Ballandras-Colas A, Patel PA, Fuchs JR, Kvaratskhelia M, Engelman A (2013) Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A 110(21):8690–8695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessl JJ, Kutluay SB, Townsend D, Rebensburg S, Slaughter A, Larue RC, Shkriabai N, Bakouche N, Fuchs JR, Bieniasz PD, Kvaratskhelia M (2016) HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell 166(5):1257–1268. e1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk PD, Huvet M, Melamed A, Maertens GN, Bangham CR (2016) Retroviruses integrate into a shared, non-palindromic DNA motif. Nat Microbiol 2:16212

    CAS  PubMed  Google Scholar 

  • Knaus RJ, Hippenmeyer PJ, Misra TK, Grandgenett DP, Muller UR, Fitch WM (1984) Avian retrovirus pp32 DNA binding protein. Preferential binding to the promoter region of long terminal repeat DNA. Biochemistry 23(2):350–359

    CAS  PubMed  Google Scholar 

  • Koh Y, Matreyek KA, Engelman A (2011) Differential sensitivities of retroviruses to integrase strand transfer inhibitors. J Virol 85(7):3677–3682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A (2010) Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A 107:15910–15915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12(5):2331–2338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A (2014) Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 42(16):10209–10225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SP, Xiao J, Knutson JR, Lewis MS, Han MK (1997) Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36(1):173–180

    CAS  PubMed  Google Scholar 

  • Lesbats P, Engelman AN, Cherepanov P (2016) Retroviral DNA integration. Chem Rev. 10.I02I/acs.chemrev.6b00125

  • Li M, Craigie R (2009) Nucleoprotein complex intermediates in HIV-1 integration. Methods 47:237–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Mizuuchi M, Burke TR Jr, Craigie R (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25(6):1295–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Krishnan L, Cherepanov P, Engelman A (2011) Structural biology of retroviral DNA integration. Virology 411(2):194–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YJ, Umehara T, Inoue M, Saito K, Kigawa T, Jang MK, Ozato K, Yokoyama S, Padmanabhan B, Guntert P (2008) Solution structure of the extraterminal domain of the bromodomain-containing protein BRD4. Protein Sci 17(12):2174–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubkowski J, Yang F, Alexandratos J, Wlodawer A, Zhao H, Burke TR Jr, Neamati N, Pommier Y, Merkel G, Skalka AM (1998) Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor. Proc Natl Acad Sci U S A 95(9):4831–4836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lusic M, Siliciano RF (2017) Nuclear landscape of HIV-1 infection and integration. Nat Rev. Microbiol 15(2):69–82

    CAS  PubMed  Google Scholar 

  • Lutzke RA, Plasterk RH (1998) Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. J Virol 72(6):4841–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468(7321):326–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, Lindemann D, Engelman AN, Costa A, Cherepanov P (2015) Structural basis for retroviral integration into nucleosomes. Nature 523(7560):366–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCord M, Stahl SJ, Mueser TC, Hyde CC, Vora AC, Grandgenett DP (1998) Purification of recombinant Rous sarcoma virus integrase possessing physical and catalytic properties similar to virion-derived integrase. Protein Expr Purif 14(2):167–177

    CAS  PubMed  Google Scholar 

  • Mesplede T, Osman N, Wares M, Quashie PK, Hassounah S, Anstett K, Han Y, Singhroy DN, Wainberg MA (2014) Addition of E138K to R263K in HIV integrase increases resistance to dolutegravir, but fails to restore activity of the HIV integrase enzyme and viral replication capacity. J Antimicrob Chemother 69(10):2733–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2(8):E234

    PubMed  PubMed Central  Google Scholar 

  • Mohammed KD, Topper MB, Muesing MA (2011) Sequential deletion of the integrase (Gag-Pol) carboxyl-terminus reveals distinct phenotypic classes of defective HIV-1. J Virol 85:4654–4666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montano SP, Pigli YZ, Rice PA (2012) The mu transpososome structure sheds light on DDE recombinase evolution. Nature 491(7424):413–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau K, Torne-Celer C, Faure C, Verdier G, Ronfort C (2000) In vivo retroviral integration: fidelity to size of the host DNA duplication might Be reduced when integration occurs near sequences homologous to LTR ends. Virology 278(1):133–136

    CAS  PubMed  Google Scholar 

  • Moreau K, Faure C, Verdier G, Ronfort C (2002) Analysis of conserved and non-conserved amino acids critical for ALSV (Avian leukemia and sarcoma viruses) integrase functions in vitro. Arch Virol 147(9):1761–1778

    CAS  PubMed  Google Scholar 

  • Moreau K, Faure C, Violot S, Gouet P, Verdier G, Ronfort C (2004) Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization. Virology 318(2):566–581

    CAS  PubMed  Google Scholar 

  • Mumm SR, Horton R, Grandgenett DP (1992) v-Src enhances phosphorylation at Ser-282 of the Rous sarcoma virus integrase. J Virol 66(4):1995–1999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowotny M (2009) Retroviral integrase superfamily: the structural perspective. EMBO Rep 10(2):144–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira DV, Kato A, Nakamura K, Ikura T, Okada M, Kobayashi J, Yanagihara H, Saito Y, Tauchi H, Komatsu K (2014) Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J Cell Sci 127(Pt 4):763–772

    CAS  PubMed  Google Scholar 

  • Pandey KK, Bera S, Zahm J, Vora A, Stillmock K, Hazuda D, Grandgenett DP (2007) Inhibition of human immunodeficiency virus type-1 concerted integration by strand transfer inhibitors which recognize a transient structural intermediate. J Virol 81:12189–12199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KK, Bera S, Vora AC, Grandgenett DP (2010) Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors. Biochemistry 49:8376–8387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KK, Bera S, Grandgenett DP (2011) The HIV-1 Integrase Monomer Induces a Specific Interaction with LTR DNA for Concerted Integration. Biochemistry 50(45):9788–9796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KK, Bera S, Korolev S, Campbell M, Yin Z, Aihara H, Grandgenett DP (2014) Rous sarcoma virus synaptic complex capable of concerted integration is kinetically trapped by human immunodeficiency virus integrase strand transfer inhibitors. J Biol Chem 289:19648–19658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KK, Bera S, Shi K, Aihara H, Grandgenett DP (2017) A C-terminal tail region in the rous sarcoma virus integrase provides high plasticity of functional integrase oligomerization during intasome assembly. J Biol Chem 292:5018–5030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passos DO, Li M, Yang R, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R, Lyumkis D (2017) Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355(6320):89–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peletskaya E, Andrake M, Gustchina A, Merkel G, Alexandratos J, Zhou D, Bojja RS, Satoh T, Potapov M, Kogon A, Potapov V, Wlodawer A, Skalka AM (2011) Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis. PLoS One 6(12):e27751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petit C, Schwartz O, Mammano F (1999) Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase. J Virol 73(6):5079–5088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4(3):236–248

    CAS  PubMed  Google Scholar 

  • Pommier Y, Kiselev E, Marchand C (2015) Interfacial inhibitors. Bioorg Med Chem Lett 25(18):3961–3965

    CAS  PubMed  Google Scholar 

  • Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA (2012) Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 86(5):2696–2705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quercioli V, Di Primio C, Casini A, Mulder LC, Vranckx LS, Borrenberghs D, Gijsbers R, Debyser Z, Cereseto A (2016) Comparative analysis of HIV-1 and murine leukemia virus three-dimensional nuclear distributions. J Virol 90(10):5205–5209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4):521–529

    CAS  PubMed  Google Scholar 

  • Sharma A, Larue RC, Plumb MR, Malani N, Male F, Slaughter A, Kessl JJ, Shkriabai N, Coward E, Aiyer SS, Green PL, Wu L, Roth MJ, Bushman FD, Kvaratskhelia M (2013) BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A 110(29):12036–12041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi K, Pandey KK, Bera S, Vora AC, Grandgenett DP, Aihara H (2013) A possible role for the asymmetric C-terminal domain dimer of Rous sarcoma virus integrase in viral DNA binding. PLoS One 8(2):e56892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skalka AM (2014) Retroviral DNA transposition: themes and variations. Microbiol Spectr 2(5):1–22

    CAS  Google Scholar 

  • Studamire B, Goff SP (2010) Interactions of host proteins with the murine leukemia virus integrase. Viruses 2(5):1110–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vora A, Grandgenett DP (2001) DNase protection analysis of retrovirus integrase at the viral DNA ends for full-site integration in vitro. J Virol 75(8):3556–3567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vora A, Bera S, Grandgenett D (2004) Structural organization of avian retrovirus integrase in assembled intasomes mediating full-site integration. J Biol Chem 279(18):18670–18678

    CAS  PubMed  Google Scholar 

  • Wei SQ, Mizuuchi K, Craigie R (1997) A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 16(24):7511–7520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei SQ, Mizuuchi K, Craigie R (1998) Footprints on the viral DNA ends in moloney murine leukemia virus preintegration complexes reflect a specific association with integrase. Proc Natl Acad Sci U S A 95(18):10535–10540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winans S, Larue RC, Abraham CM, Shkriabai N, Skopp A, Winkler D, Kvaratskhelia M, Beemon KL (2017) The FACT complex promotes avian leukosis virus DNA integration. J Virol 91:e00082–e00017

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626):1749–1751

    CAS  PubMed  Google Scholar 

  • Yang ZN, Mueser TC, Bushman FD, Hyde CC (2000) Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. J Mol Biol 296(2):535–548

    CAS  PubMed  Google Scholar 

  • Yin H, Lapkouski M, Yang W, Craigie R (2012) Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Sci 21:1849–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Shi K, Banerjee S, Pandey KK, Bera S, Grandgenett DP, Aihara H (2016) Crystal structure of the Rous sarcoma virus intasome. Nature 530(7590):362–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zeng F, Liu Y, Shao C, Li S, Lv H, Shi Y, Niu L, Teng M, Li X (2015) Crystal Structure of Human SSRP1 Middle Domain Reveals a Role in DNA Binding. Sci Rep 5:18688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A 93(24):13659–13664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Rainey GJ, Wong SK, Coffin JM (2001) Substrate sequence selection by retroviral integrase. J Virol 75(3):1359–1370

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Aihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grandgenett, D.P., Aihara, H. (2018). Oligomerization of Retrovirus Integrases. In: Harris, J., Bhella, D. (eds) Virus Protein and Nucleoprotein Complexes. Subcellular Biochemistry, vol 88. Springer, Singapore. https://doi.org/10.1007/978-981-10-8456-0_10

Download citation

Publish with us

Policies and ethics