Skip to main content

Anticancer Potential of Andrographolide, a Diterpenoid Lactone from Andrographis paniculata: A Nature’s Treasure for Chemoprevention and Therapeutics

  • Chapter
  • First Online:

Abstract

Cancer is one of the major causes of mortality in human population worldwide. The conventional drugs are known to be accompanied with severe side effects. Thus, the recent research is focused to find out the new chemotherapeutic agents of natural origin (plants derived) against cancer, which have the least side effects. In this regard, andrographolide, a major bioactive compound of a traditional medicinal plant, Andrographis paniculata has drawn much attention. It has shown a strong anticancer potential in several in vitro and in vivo studies against different cancers because of its ability to inhibit cell cycle progression in cancer cells. Moreover, it has also shown antimetastatic and antiangiogenic properties in different cancer cells through various underlying molecular mechanism of action. Recently, the roles of andrographolide in cancer progression via cellular developmental pathways have gained attention. Thus, the aim of this chapter is to summarize the anticancer potential of andrographolide and provide an insight in identifying new molecular targets for developing new cancer treatment strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K (1999) Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 45:252–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akbar S (2011) Andrographis paniculata: a review of pharmacological activities and clinical effects. Altern Med Rev 16:66–77

    PubMed  Google Scholar 

  • Bao GQ, Shen BY, Pan CP, Zhang YJ, Shi MM, Peng CH (2013) Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer. Toxicol Lett 222:23–35

    Article  PubMed  CAS  Google Scholar 

  • Bertrand FE, Angus CW, Partis WJ, Sigounas G (2012) Developmental pathways in colon cancer crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle 11:4344–4351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boik J (2001) Natural compounds in cancer therapy. Oregon Medical Press/LLC, Princeton

    Google Scholar 

  • Burgos RA, Caballero EE, Sánchez NS, Schroeder RA, Wikman GK, Hancke JL (1997) Testicular toxicity assessment of Andrographis paniculata dried extract in rats. J Ethnopharmacol 58:219–224

    Article  PubMed  CAS  Google Scholar 

  • Butler MS, Newman DJ (2008) Mother nature’s gifts to diseases of man: the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery. In: Peterson F, Amstutz R (eds) Progress in drug research, natural products as drugs. Birkhauser, Basel, pp 2–44

    Google Scholar 

  • Chao WW, Lin BF (2010) Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao WW, Kuo YH, Li WC, Lin BF (2009) The production of nitric oxide and prostaglandin E2 in peritoneal macrophages is inhibited by Andrographis paniculata, Angelica sinensis and Morus alba ethyl acetate fractions. J Ethnopharmacol 122:68–75

    Article  PubMed  Google Scholar 

  • Chao HP, Kuo CD, Chiu JH, Fu SL (2010a) Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. Planta Med 76:1827–1833

    Article  PubMed  CAS  Google Scholar 

  • Chao WW, Kuo YH, Lin BF (2010b) Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-κB trans-activation inhibition. J Agric Food Chem 58:2505–2512

    Article  PubMed  CAS  Google Scholar 

  • Chao CY, Lii CK, Hsu YT, Lu CY, Liu KL, Li CL, Chen HW (2013) Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 34:1843–1851

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary G, Goyal S, Poonia P (2010) Lawsonia inermis Linnaeus: a phytopharmacological review. Int J Pharm Sci Drug Res 2:91–98

    Google Scholar 

  • Chen L, Zhu H, Wang R, Zhou K, Jing Y, Qiu F (2008) ent-Labdane diterpenoid lactone stereoisomers from Andrographis paniculata. J Nat Prod 71:852–855

    Article  PubMed  CAS  Google Scholar 

  • Chen YY, Hsu MJ, Sheu JR, Lee LW, Hsieh CY (2013) Andrographolide, a novel NF-B inhibitor, induces vascular smooth muscle cell apoptosis via a ceramide-p47 phox-ROS signaling cascade. Evid Based Complement Alternat Med 2013:821813

    PubMed  PubMed Central  Google Scholar 

  • Chen CC, Wu ML, Doerksen RJ, Ho CT, Huang TC (2015) Andrographolide induces apoptosis via down-regulation of glyoxalase 1 and HMG-CoA reductase in HL-60 cells. J Funct Foods 14:226–235

    Article  CAS  Google Scholar 

  • Cheung HY, Cheung CS, Kong CK (2001) Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J Chromatogr A 930:171–176

    Article  PubMed  CAS  Google Scholar 

  • Cheung HY, Cheung SH, Li J, Cheung CS, Lai WP, Fong WF, Leung FM (2005) Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells. Planta Med 71:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Cheung MT, Ramalingam R, Lau KK, Chiang WL, Chiu SK (2012) Cell type-dependent effects of andrographolide on human cancer cell lines. Life Sci 91:751–760

    Article  PubMed  CAS  Google Scholar 

  • Chun JY, Tummala R, Nadiminty N, Lou W, Liu C, Yang J, Evans CP, Zhou Q, Gao AC (2010) Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth. Genes Cancer 1:868–876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  PubMed  Google Scholar 

  • Ekalaksananan T, Sookmai W, Fangkham S, Pientong C, Aromdee C, Seubsasana S, Kongyingyoes B (2015) Activity of Andrographolide and its derivatives on HPV16 Pseudovirus infection and viral oncogene expression in cervical carcinoma cells. Nutr Cancer 67:687–696

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ (2005) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  Google Scholar 

  • Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2:458–466

    Article  PubMed  CAS  Google Scholar 

  • Gabrielian ES, Shukarian AK, Goukasova GI, Chandanian GL, Panossian AG, Wikman G, Wagner H (2002) A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine 9:589–597

    Article  PubMed  CAS  Google Scholar 

  • Geethangili M, Rao YK, Fang SH, Tzeng YM (2008) Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in Jurkat cells. Phytother Res 22:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Geissler K, Zach O (2012) Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway. Ann Hematol 91:645–669

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 30:626–629

    Article  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Hajiaghaee R, Akhondzadeh S (2012) Herbal medicine in the treatment of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 21:113–118

    Google Scholar 

  • Hall M, Bates S, Peters G (1995) Evidence for different modes of action of Cyclin-dependent kinase inhibitors p15 and p16 that bind to kinases p21, and p27 bind to cyclins. Oncogene 11:1581–1588

    PubMed  CAS  Google Scholar 

  • Han Y, Bu LM, Ji X, Liu CY, Wang ZH (2005) Modulation of multidrug resistance by andrographolid in a HCT-8/5-FU multidrug-resistant colorectal cancer cell line. Chin J Dig Dis 6:82–86

    Article  PubMed  Google Scholar 

  • Harjotaruno S, Widyawaruyanti A, Sismindari Zaini NC (2007) Apoptosis inducing effect of andrographolide on TD-47 human breast cancer cell line. Afr J Tradit CAM 4:345–351

    Google Scholar 

  • Hossain MS, Urbi Z, Sule A, Rahman KMH (2014) Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Sci World J 2014:274905. https://doi.org/10.1155/2014/274905

    Article  Google Scholar 

  • Hunter T (1993) Breaking the cycle. Cell 75:839–841

    Article  PubMed  CAS  Google Scholar 

  • Iannolo G, Conticello C, Memeo L, De Maria R (2008) Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol 66:42–51

    Article  PubMed  Google Scholar 

  • Iruretagoyena MI, Tobar JA, González PA, Sepúlveda SE, Figueroa CA, Burgos RA, Hancke JL, Kalergis AM (2005) Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther 312:366–372

    Article  PubMed  CAS  Google Scholar 

  • Jackman AL, Kaye S, Workman P (2004) The combination of cytotoxic and molecularly targeted therapies-can it be done. Drug Discov Today 1:445–454

    CAS  Google Scholar 

  • Jada SR, Hamzah AS, Lajis NH, Saad MS, Stevens MF, Stanslas J (2006) Semisynthesis and cytotoxic activities of andrographolide analogues. J Enzyme Inhib Med Chem 21:145–155

    Article  PubMed  CAS  Google Scholar 

  • Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, Stevens MF, Stanslas J (2007) Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry 68:904–912

    Article  PubMed  CAS  Google Scholar 

  • Jarukamjorn K, Nemoto N (2008) Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J Health Sci 54:370–381

    Article  CAS  Google Scholar 

  • Ji LL, Liu TY, Liu J, Chen Y, Wang ZT (2007) Andrographolide inhibits human hepatoma derived Hep3B cells growth through the activation of c-Jun N-terminal kinase. Planta Med 73:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Ji L, Shen K, Liu J, Chen Y, Liu T, Wang Z (2009) Intracellular glutathione regulates Andrographolide-induced cytotoxicity on hepatoma Hep3B cells. Redox Rep 14:176–184

    Article  PubMed  CAS  Google Scholar 

  • Jiang CG, Li JB, Liu FR, Wu T, Yu M, Xu HM (2007) Andrographolide inhibits the adhesion of gastric cancer cells to endothelial cells by blocking E-selectin expression. Anticancer Res 27:2439–2448

    PubMed  CAS  Google Scholar 

  • Jin Z, McDonald ER III, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL induced apoptosis. J Biol Chem 279:35829–35839

    Article  PubMed  CAS  Google Scholar 

  • Joy P, Thomas J, Mathew S, Skaria BP (1998) Medicinal plants. Trop Hortic 2:449–632

    Google Scholar 

  • Kabir MH, Hasan N, Rahman MM, Rahman MA, Khan JA, Hoque NT, Bhuiyan MR, Mou SM, Jahan R, Rahmatullah M (2014) A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J Ethnobiol Ethnomed 10:19. https://doi.org/10.1186/1746-4269-10-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamdje AHN, Kamga PT, Simo RT, Vecchio L, Etet PFS, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M (2017) Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol Med 14:109–120

    Article  Google Scholar 

  • Kim YS, Milner JA (2005) Targets for indole-3-carbinol in cancer prevention. J Nutr Biochem 16:65–73

    Article  PubMed  CAS  Google Scholar 

  • Kim TG, Hwi KK, Hung CS (2005) Morphological and biochemical changes of andrographolide induced cell death in human prostatic adenocarcinoma PC-3 cells. In Vivo 19:551–558

    PubMed  CAS  Google Scholar 

  • Koury J, Zhong L, Hao J (2017) Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int 2017:2925869. https://doi.org/10.1155/2017/2925869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S (2004) Anticancer and immuno-stimulatory compounds from Andrographis paniculata. J Ethnopharmacol 92:291–295

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Patil HS, Sharma P, Kumar D, Dasari S, Puranik VG, Thulasiram HV, Kundu GC (2012) Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway. Curr Mol Med 12:952–966

    Article  PubMed  CAS  Google Scholar 

  • Lai YH, Yu SL, Chen HY, Wang CC, Chen HW, Chen JJW (2013) The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 34:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Lee YC, Lin HH, Hsu CH, Wang CJ, Chiang TA, Chen JH (2010) Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 632:23–32

    Article  PubMed  CAS  Google Scholar 

  • Li J, Cheung HY, Zhang Z, Chan GK, Fong WF (2007a) Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species. Eur J Pharmacol 568:31–44

    Article  PubMed  CAS  Google Scholar 

  • Li W, Xu X, Zhang H, Ma C, Fong H, van Breemen R, Fitzloff J (2007b) Secondary metabolites from Andrographis paniculata. Chem Pharm Bull 55:455–458

    Article  CAS  Google Scholar 

  • Li Y, Zhang P, Qiu F, Chen L, Miao C, Li J, Xiao W, Ma E (2012) Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci 90:962–967

    Article  PubMed  CAS  Google Scholar 

  • Li CJ, Zhang H, Jiang HO, Cheng J (2015) Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth. Onco Targets Ther 8:427–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang FP, Lin CH, Kuo CD, Chao HP, Fu SL (2008) Suppression of v-Src transformation by andrographolide via degradation of the v-Src protein and attenuation of the Erk signaling pathway. J Biol Chem 283:5023–5033

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Tsai CW, Chou FP, Wang CJ, Hsuan SW, Wang CK, Chen JH (2011) Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells. Toxicol Appl Pharmacol 250:336–345

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Shi MD, Tseng HC, Chen JH (2014) Andrographolide sensitizes the cytotoxicity of human colorectal carcinoma cells toward cisplatin via enhancing apoptosis pathways in vitro and in vivo. Toxicol Sci 139:108–120

    Article  PubMed  CAS  Google Scholar 

  • Liu SH, Lin CH, Liang FP, Chen PF, Kuo CD, Alam MM, Maiti B, Hung SK, Chi CW, Sun CM, Fu SL (2014) Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy. Biochem Pharmacol 87:229–242

    Article  PubMed  CAS  Google Scholar 

  • Lowe BJ (1994) Carbohydrate recognition in cell-cell interaction. In: Fukuda M, Hindsgaul O (eds) Molecular glycobiology. Oxford University Press, Oxford, pp 163–205

    Google Scholar 

  • Luo W, Liu Y, Zhang J, Luo X, Lin C, Guo J (2013) Andrographolide inhibits the activation of NF-κB and MMP-9 activity in H3255 lung cancer cells. Exp Ther Med 6:743–746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo X, Luo W, Lin C, Zhang L, Li Y (2014) Andrographolide inhibits proliferation of human lung cancer cells and the related mechanisms. Int J Clin Exp Med 7:4220–4225

    PubMed  PubMed Central  Google Scholar 

  • MacLachian TK, Sang N, Giordano A (1995) Cyclins, cyclin-dependent kinases and Cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Exp 5:127–156

    Article  Google Scholar 

  • Maiti K, Gantait A, Mukherjee K, Saha BP, Mukherjee PK (2006) Therapeutic potentials of andrographolide from Andrographis paniculata: a review. J Nat Remed 6:1–13

    CAS  Google Scholar 

  • Manikam SD, Stanslas J (2009) Andrographolide inhibits growth of acute promyelocytic leukaemia cells by inducing retinoic acid receptor independent cell differentiation and apoptosis. J Pharm Pharmacol 61:69–78

    Article  PubMed  CAS  Google Scholar 

  • Manoharan S, Singh AK, Suresh K, Vasudevan K, Subhasini R, Baskaran N (2012) Anti-tumor initiating potential of Andrographolide in 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev 13:5701–5708

    Article  PubMed  CAS  Google Scholar 

  • Mans DR, Rocha AB, Schwartsmann G (2005) Plant based anticancer drug discovery and development. Oncologist 5:185–198

    Article  Google Scholar 

  • Matsuda T, Kuroyanagi M, Sugiyama S, Umehara K, Ueno A, Nishi K (1994) Cell differentiation inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull 42:1216–1225

    Article  CAS  Google Scholar 

  • Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Janet A (2011) Houghton, hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res 71:1092–1102

    Article  PubMed  CAS  Google Scholar 

  • Nanduri S, Nyavanandi VK, Thunuguntla SSR, Kasu S, Pallerla MK, Ram PS, Rajagopal S, Kumar RA, Ramanujam R, Babu JM, Vyas K, Devi AS, Reddy GO, Akella V (2004) Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg Med Chem Lett 14:4711–4717

    Article  PubMed  CAS  Google Scholar 

  • Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608

    Article  PubMed  CAS  Google Scholar 

  • Parks WC, Shapiro SD (2001) Matrix metalloproteinases in lung biology. Respir Res 2:10–19

    Article  PubMed  CAS  Google Scholar 

  • Peng T, Hu M, Wu TT, Zhang C, Chen Z, Huang S, Zhou XH (2015) Andrographolide suppresses proliferation of nasopharyngeal carcinoma cells via attenuating NF-B pathway. Biomed Res Int 2015:735056. https://doi.org/10.1155/2015/735056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters M, Herskowitz I (1994) Joining the complex: Cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79:181–184

    Article  Google Scholar 

  • Pholphana N, Rangkadilok N, Thongnest S, Ruchirawat S, Ruchirawat M, Satayavivad J (2004) Determination and variation of three active diterpenoids in Andrographis paniculata (Burm.f.) Nees. Phytochem Anal 15:365–371

    Article  PubMed  CAS  Google Scholar 

  • Radhika P, Prasad YR, Lakshmi KR (2010) Flavones from the stem of Andrographis paniculata Nees. Nat Prod Commun 5:59–60

    PubMed  CAS  Google Scholar 

  • Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R (2003) Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 3:147–158

    Article  PubMed  CAS  Google Scholar 

  • Rao KY, Vimalamma G, Rao CV, Tzeng YM (2004) Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry 65:2317–2321

    Article  PubMed  CAS  Google Scholar 

  • Reddy MVB, Kishore PH, Rao CV, Gunasekar D, Caux C, Bodo B (2003) New 2′- oxygenated flavonoids from Andrographis affinis. J Nat Prod 66:295–297

    Article  CAS  Google Scholar 

  • Reddy VL, Reddy SM, Ravikanth V, Krishnaiah P, Goud TV, Rao TP, Ram TS, Gonnade RG, Bhadbhade M, Venkateswarlu Y (2005) A new bis-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Nat Prod Res 19:223–230

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana C, Deevi DS, Rajagopalan R, Srinivas N, Rajagopal S (2004) DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells. BMC Cancer 4:26. https://doi.org/10.1186/1471-2407-4-26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sethi N, Kang Y (2011) Notch signalling in cancer progression and bone metastasis. Br J Cancer 105:1805–1810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma M, Sharma R (2013) Identification, purification and quantification of andrographolide from Andrographis paniculata (burm. F.) Nees by HPTLC at different stages of life cycle of crop. J Curr Chem Pharm Sci 3:23–32

    CAS  Google Scholar 

  • Sheeja K, Shihab PK, Kuttan G (2006) Antioxidant and anti-inflammatory activities of the plant Andrographis paniculata Nees. Immunopharmacol Immunotoxicol 28:129–140

    Article  PubMed  CAS  Google Scholar 

  • Sheeja K, Guruvayoorappan C, Kuttan G (2007) Antiangiogenic activity of Andrographis paniculata extract and andrographolide. Int Immunopharmacol 7:211–221

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Ji L, Lu B, Xu C, Gong C, Morahan G, Wang Z (2014) Andrographolide inhibits tumor angiogenesis via blocking VEGFA/VEGFR2-MAPKs signaling cascade. Chem Biol Interact 218:99–106

    Article  PubMed  CAS  Google Scholar 

  • Shi MD, Lin HH, Leea YC, Chaod JK, Line RA, Chen JH (2008) Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem Biol Interact 174:201–210

    Article  PubMed  CAS  Google Scholar 

  • Shi MD, Lin HH, Chiang TA, Tsai LY, Tsai SM, Lee YC, Chen JH (2009) Andrographolide could inhibit human colorectal carcinoma Lovo cells migration and invasion via down-regulation of MMP-7 expression. Chem Biol Interact 180:344–352

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira K, Nakayama J, Nakamura N, Hasebe O, Katsuyama T, Fukuda M (1997) Carcinoma-associated expression of core 2 beta-1, 6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression. Cancer Res 57:5201–5206

    PubMed  CAS  Google Scholar 

  • Singh RP, Banerjee S, Rao AR (2001) Modulatory influence of Andrographis paniculata on mouse hepatic and extrahepatic carcinogen metabolizing enzymes and antioxidant status. Phytother Res 15:382–390

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Meena AK, Meena S, Pant P, Padhi MM (2012) Studies on standardisation of Andrographis paniculata Nees and identification by HPTLC using andrographolide as marker compound. Int J Pharm Pharm Sci 4:197–200

    Google Scholar 

  • Siripong P, Konkathip B, Preechanukool K, Picha P, Tunsuwan K, Taylor WC (1992) Cytotoxic diterpenoid constituents from Andrographis paniculata Nees. leaves. J Sci Soc Thail 18:187–194

    Article  CAS  Google Scholar 

  • Spataro V (1998) Recent advances in the molecular genetics of cancer. Ann Oncol 9:23–29

    Article  PubMed  CAS  Google Scholar 

  • Suo XB, Zhang H, Wang YQ (2007) HPLC determination of andrographolide in rat whole blood: study on the pharmacokinetics of andrographolide incorporated in liposomes and tablets. Biomed Chromatogr 21:730–734

    Article  PubMed  CAS  Google Scholar 

  • Trivedi NP, Rawal UM, Patel BP (2007) Hepatoprotective effect of andrographolide against hexachlorocyclohexane induced oxidative injury. Integr Cancer Ther 6:271–280

    Article  PubMed  CAS  Google Scholar 

  • Tung YT, Chen HL, Tsai HC, Yang SH, Chang YC, Chen CM (2013) Therapeutic potential of Andrographolide isolated from the leaves of Andrographis paniculata Nees for treating lung adenocarcinomas. Evid Based Complement Alternat Med 2013:305898

    Google Scholar 

  • Varma A, Padh H, Shrivastava N (2009) Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med 2009:815390. https://doi.org/10.1093/ecam/nep135

    Article  Google Scholar 

  • Wang LJ, Zhou X, Wang W, Tang F, Qi CL, Yang X, Wu S, Lin YQ, Wang JT, Geng JG (2011) Andrographolide inhibits oral squamous cell carcinogenesis through NF-κB inactivation. J Dent Res 90:1246–1252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warber SL, Seymour M, Kaufman PB, Kirakosyan A, Cseke LJ (2006) Natural products from plants, 2nd edn. CRC Press/Taylor and Francis, Boca Raton, pp 415–440

    Google Scholar 

  • Watt FM, Soline Estrach S, Ambler CA (2008) Epidermal notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 20:171–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  PubMed  CAS  Google Scholar 

  • Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M (2005) Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1. Phytother Res 19:1069–1070

    Article  PubMed  CAS  Google Scholar 

  • Wong HC, Sagineedu SR, Lajis NH, Loke SC, Stanslas J (2011) Andrographolide induces cell cycle arrest and apoptosis in PC-3 prostate cancer cells. Afr J Pharm Pharmacol 5:225–233

    Article  CAS  Google Scholar 

  • Woo AYH, Waye MMY, Tsui SKW, Yeung STW, Cheng CHK (2008) Andrographolide up-regulates cellular reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther 325:226–235

    Article  PubMed  CAS  Google Scholar 

  • Xia YF, Ye BQ, Li YD, Wang JG, He XJ, Lin X, Yao X, Ma D, Slungaard A, Hebbel RP, Key NS, Geng JG (2004) Andrographolide attenuates inflammation by inhibition of NF kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol 173:4207–4217

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wu DF, Luo K, Wu S, Wu P (2009) Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Lett 276:180–188

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Evens AM, Prachand S, Singh AT, Bhalla S, David K, Gordon LI (2010) Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata. Clin Cancer Res 16:4755–4768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang SH, Wang SM, Syu JP, Chen Y, Wang SD, Peng YS, Kuo MF, Kung HN (2014) Andrographolide induces apoptosis of C6 Glioma cells via the ERK-p53-Caspase 7-PARP pathway. BioMed Res Int 15

    Google Scholar 

  • Yeh P, Kishony R (2007) Networks from drug-drug surfaces. Mol Syst Biol 3:85. https://doi.org/10.1038/msb4100133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu BC, Hung CR, Chen WC, Cheng JT (2003) Antihyperglycemic effect of andrographolide in streptozotocin induced diabetic rats. Planta Med 69:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Yunos NM, Mutalip SSM, Jauri MH, Yu JQ, Huq F (2013) Anti-proliferative and pro-apoptotic effects from sequenced combinations of andrographolide and cisplatin on ovarian cancer cell lines. Anticancer Res 33:4365–4372

    PubMed  CAS  Google Scholar 

  • Zhai Z, Qu X, Yan W, Li H, Liu G, Liu X, Tang T, Qin A, Dai K (2014) Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res Treat 144:33–45

    Article  PubMed  CAS  Google Scholar 

  • Zhang QQ, Ding Y, Lei Y, Qi CL, He XD, Lan T, Li JC, Gong P, Yang X, Geng JG, Wang LJ (2014a) Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma. Int J Biol Sci 10:404–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang QQ, Zhou DL, Ding Y, Liu HY, Lei Y, Fang HY, Gu QL, He XD, Qi CL, Yang Y, Lan T, Li JC, Gong P, Wu XY, Yang X, Li WD, Wang LJ (2014b) Andrographolide inhibits melanoma tumor growth by inactivating the TLR4/NF-κB signaling pathway. Melanoma Res 24:545–555

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, He EQ, Wang L, Liu K (2008) Antitumor activities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level. J Asian Nat Prod Res 10:473–479

    CAS  Google Scholar 

  • Zhong J, Chen S, Xue M, Du Q, Cai J, Jin HC, Si J, Wang L (2012) ZIC1 modulates cell-cycle distributions and cell migration through regulation of sonic hedgehog, PI3K and MAPK signaling pathways in gastric cancer. BMC Cancer 12:290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Zhang S, Ong CN, Shen HM (2006) Critical role of pro-apoptotic Bcl-2 family members in andrographolide induced apoptosis in human cancer cells. Biochem Pharmacol 72:132–144

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Lu GD, Ong CH, Ong CN, Shen HM (2008) Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol Cancer Ther 7:2170–2180

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Ong CN, Hur GM, Shen HM (2010) Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol 79:1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Hu SE, Tan SH, Cao R, Chen Y, Xia D, Zhu X, Yang XF, Ong CN, Shen HM (2012) Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy 8:338–349

    Article  PubMed  CAS  Google Scholar 

  • Zucker S, Vacirca J (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23:101–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irfan Ahmad Ansari or Mohd Sayeed Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, I., Yusuf, M.A., Ansari, I.A., Akhtar, M.S. (2018). Anticancer Potential of Andrographolide, a Diterpenoid Lactone from Andrographis paniculata: A Nature’s Treasure for Chemoprevention and Therapeutics. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Mechanisms and Molecular Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-10-8417-1_6

Download citation

Publish with us

Policies and ethics