Skip to main content

Energy Efficient Future Generation Electronics Based on Strongly Correlated Electron Systems

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Three major developments in three decades are quietly changing the whole spectrum of ‘electronics’ (as it is conventionally known) making it ready for a major revolution. At the heart of this lies the ‘electronics based on strongly correlated electron systems’. The broad canvass of ‘strongly correlated electron systems’—especially the ones assuming importance for future generation electronics—covers primarily transition metal ion based complex oxide compounds exhibiting superconductivity at a record high temperature (cuprate superconductors); gigantic change in electrical resistivity under tiny magnetic field (CMR manganites); and coexisting ferroelectric and magnetic orders within a single phase with an extraordinary cross-coupling (multiferroics). Thanks to these developments, apart from charge of an electron, its spin and orbital degrees of freedom are now being shown to offer tremendous manoeuvrability for developing not just electronic but spintronic and orbitronic devices as well. Larger coherence length and stability of spin and orbital spectra can be exploited for bringing functionalities hitherto unknown. Using up and down spins and different patterns of orbital occupancy of the electrons, it is now possible to design and develop spintronic and even orbitronic devices by exploiting esoteric effects such as spin-transport, spin-tunnelling, spin-Hall, spin-Seebeck or switching of orbital orders under optical illumination. These nanoscale devices are energy efficient and ultra-sensitive. They are expected to perform more complex jobs in a vast arena which includes even bio-electronics. In this article, we introduce the area of strongly correlated electron systems and explore the advancements already made and possibilities emerging in developing future generation electronic-spintronic-orbitronic devices based on complexities which till now stubbornly defied complete understanding in spite of intense efforts worldwide—a classic example of which is the mechanism of high temperature cuprate based superconductors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bednorz JG, Muller KA (1986) Z Phys B 64:189

    Google Scholar 

  2. See, for example, Dagotto E (1994) Rev Mod Phys 66:763

    Google Scholar 

  3. See articles in Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides, edited by C.N.R. Rao and B. Raveau (World Scientific, Singapore, 1998)

    Google Scholar 

  4. Wang KF, Liu J-M, Ren ZF (2009) Adv Phys 58:321

    Article  Google Scholar 

  5. See, for example, Chappert C, Fert A, Van Dau FN (2007) Nat Mater 6:813

    Google Scholar 

  6. Cox DL, Maple MB (1995) Phys Today 48(2):32

    Article  Google Scholar 

  7. Anderson PW (1997) The theory of high-Tc superconductivity. Princeton University Press, Princeton

    Google Scholar 

  8. Wu MK et al (1987) Phys Rev Lett 58:908

    Article  Google Scholar 

  9. Maeda H et al (1988) Jpn J Appl Phys 27:L209

    Article  Google Scholar 

  10. Tarascon JM et al (1988) Phys Rev B 38:8885

    Article  Google Scholar 

  11. Mott NF, Davis EA (1971) Electronic processes in non crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  12. Maeda A et al (2005) J Phys: Condens Mater 17:143

    Google Scholar 

  13. Tahir-Kheli J, Goddard WA (2010) J Phys Chem Lett 1:1290

    Article  Google Scholar 

  14. Blatter G et al (1994) Rev Mod Phys 66:1125

    Article  Google Scholar 

  15. Eshurum Y et al (1996) Rev Mod Phys 68:911

    Article  Google Scholar 

  16. Jin S et al (1994) Science 264:413

    Article  Google Scholar 

  17. See the articles in Colossal Magneto-resistive oxides, edited by Y. Tokura (Gordon and Breach, Amsterdam, 2000)

    Google Scholar 

  18. See for example, Dagotto E et al (2001) Phys Rep 344:1

    Google Scholar 

  19. Tomioka Y et al (1995) Phys Rev Lett 74:5108

    Article  Google Scholar 

  20. Filipév VS et al (1961) Sov Phys Crystallogr 5:913

    Google Scholar 

  21. Hill NA (2000) J Phys Chem B 104:6694

    Article  Google Scholar 

  22. Wang J et al (2003) Science 299:1719

    Article  Google Scholar 

  23. See for example, Khomskii D (2009) Physics 2:20

    Google Scholar 

  24. Cheong SW, Mostovoy M (2007) Nat Mater 6:13

    Article  Google Scholar 

  25. Zheng H et al (2004) Science 303:661

    Article  Google Scholar 

  26. Abrikosov AA (1957) Sov Phys JETP 5:1774

    Google Scholar 

  27. Larbalestier DC et al (2001) Nature 414:368

    Article  Google Scholar 

  28. Gurevich A, Pashitskii A (1998) Phys Rev B 57:13878

    Article  Google Scholar 

  29. See for example, Scanlan RM et al (2004) Proceedings of the IEEE, vol 92, p 1639

    Google Scholar 

  30. Tsukamoto A et al (2005) IEEE Trans Appl Supercond 15:173

    Article  Google Scholar 

  31. Suzuki H et al (2005) Physica C 426–431:1643

    Article  Google Scholar 

  32. Bowen M et al (2003) Appl Phys Lett 82:233

    Article  Google Scholar 

  33. See for example, Wolf SA et al (2007) Science 294:1488

    Google Scholar 

  34. Bruno P (1999) Phys Rev Lett 83:2425

    Article  Google Scholar 

  35. Kim J-H et al (2003) Appl Phys Lett 82:4295

    Article  Google Scholar 

  36. Mathur ND et al (1997) Nature 387:266

    Article  Google Scholar 

  37. Singla R et al (2013) Phys Rev B 88:075107

    Article  Google Scholar 

  38. Miller T, Gensch M, Wall S (2016) Phys Scr 91:124002

    Article  Google Scholar 

  39. Heron JT et al (2014) Nature 516:372

    Article  Google Scholar 

  40. See for example, Heron JT et al (2014) Appl Phys Rev 1:021303

    Google Scholar 

  41. Lorenz M et al (2016) Adv Mater Interfaces 3:11500822

    Article  Google Scholar 

  42. Heron JT et al (2011) Phys Rev Lett 107:217202

    Article  Google Scholar 

  43. Ryu J et al (2015) Energy Env Sci 8:2402

    Article  Google Scholar 

  44. Fetisov YK, Srinivasan G (2006) Appl Phys Lett 88:143503

    Article  Google Scholar 

  45. Glass AM et al (1974) Appl Phys Lett 25:233

    Article  Google Scholar 

  46. Nechache R et al (2011) Appl Phys Lett 98:202902

    Article  Google Scholar 

  47. Kargol A et al (2012) In: Malkinski L (ed) Advanced magnetic materials. In Tech, Rijeka, Chapter 4

    Google Scholar 

  48. See for example, Lorenz M et al (2016) J Phys D: Appl Phys 49:433001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipten Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Goswami, S., Bhattacharya, D. (2018). Energy Efficient Future Generation Electronics Based on Strongly Correlated Electron Systems. In: De, S., Bandyopadhyay, S., Assadi, M., Mukherjee, D. (eds) Sustainable Energy Technology and Policies. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8393-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8393-8_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8392-1

  • Online ISBN: 978-981-10-8393-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics