Skip to main content

MnO2 Nanoparticles Embedded Polypyrrole Nanotubes for Supercapacitor Electrodes

  • Conference paper
  • First Online:
Green Chemistry in Environmental Sustainability and Chemical Education

Abstract

This research article refers to the synthesis and characterization of MnO2 nanoparticles embedded on polypyrrole nanotubes. The product was synthesised by chemical oxidative polymerization method. Combination of MnO2 nanoparticles and polypyrrole nanotubes enhance the capability of the nanocomposite. The microstructures and properties of Polypyrrole nanotubes (PPy) and MnO2 embedded Polypyrrole nanotubes (PPy:MnO2) were determined by TEM and SEM. FT-IR spectra was recorded to determine the chemical structure of the products. XRD was used to determine the crystalline structure of the products. The PPy:MnO2 nanocomposite electrode shows substantial improvement in the redox performance compared to individual component PPy. The specific capacitance value of electrode material PPy:MnO2 was found to be ~200 F g−1 at 5 mV s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conway BE (1999) Electrochemical capacitors: scientific fundamental and technological applications. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  PubMed  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  4. Kotz R, Carlen M (2000) Principals and applications of electrochemical capacitors. Electorchim Acta 45:2483–2496

    Article  CAS  Google Scholar 

  5. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2003) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13:497–500

    Article  Google Scholar 

  6. Wang Q, Wen Z, Li JA (2006) Hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv Funct Mater 17:845–854

    Google Scholar 

  7. Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitors. Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  8. Sharma RK, Oh HS, Shul YG, Kim HS (2007) Carbon supported MnO2 nanorods for electrochemical supercapacitor. J Power Sources Short Commun 173:1024–1028

    Google Scholar 

  9. Zordan TA, Hepler LG (1968) Thermochemistry and oxidation potentials of manganese and its compounds. Chem Rev 68:737–745

    Article  CAS  Google Scholar 

  10. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668

    Article  CAS  PubMed  Google Scholar 

  11. Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45:2038–2044

    Article  CAS  PubMed  Google Scholar 

  12. Subramanian V, Zhu H, Wei B (2008) Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem Phys Lett 453:242–249

    Article  CAS  Google Scholar 

  13. Yang X, Tang W, Feng Q, Ooi K (2003) Single crystal growth of Birnessite and Hollandite-type manganese oxides by a flux method. Cryst Growth Des 3:409–415

    Article  CAS  Google Scholar 

  14. Zheng D, Yin Z, Zhang W, Tan X, Sun S (2006) Novel branched—MnOOH and MnO2 multipod nanostructures. Cryst Growth Des 6:1733–1735

    Article  CAS  Google Scholar 

  15. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of MnO2 hollow spheres and hollow Urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  16. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  17. Toupin M, Brousse T, Belanger D (2002) Influence of microstructure on the charge storage properties of chemically synthesised manganese dioxide. Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  18. Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposite for electrochemical supercapacitor. Electrochim Acta 53:7690–7695

    Article  CAS  Google Scholar 

  19. Sharma RK, Zhai L (2009) Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nanocomposite electrode for supercapacitors. Electrochim Acta 54:7148–7155

    Article  CAS  Google Scholar 

  20. Grover S, Shekhar S, Sharma RK, Singh G (2014) Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: role of manganese oxide dispersion in performance evolution. Electrochim Acta 116:137–145

    Article  CAS  Google Scholar 

  21. Sahu V, Shekhar S, Sharma RK, Singh G (2015) Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. Appl Mater Interfaces 7:3110–3116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank all the lab members and USIC staff of Delhi University. The financial support was provided by Department of Science and Technology (DST), Delhi, India through DST Women Scientist B, Project No. DST/Disha/SoRF-PM/029/2013/G, Dated: 8/07/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kishore Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, T., Sharma, R.K., Singh, G. (2018). MnO2 Nanoparticles Embedded Polypyrrole Nanotubes for Supercapacitor Electrodes. In: Parmar, V., Malhotra, P., Mathur, D. (eds) Green Chemistry in Environmental Sustainability and Chemical Education. Springer, Singapore. https://doi.org/10.1007/978-981-10-8390-7_19

Download citation

Publish with us

Policies and ethics