Advertisement

Spoof Surface Plasmon Excitation of Dielectric Resonator Antennas

  • Amin Kianinejad
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter designs a spoof surface plasmon feeding structure for Dielectric Resonator Antennas (DRAs) to excite their prohibited TE modes. These modes are experimentally and numerically demonstrated and their unique features and merits including the reduced thickness-dependency of the resonance frequency and the horizontally polarized omnidirectional radiation are thus verified. Our proposed method opens a vista to find new potential applications of DRAs in antenna designs.

Antenna feed Antenna radiation pattern Dielectric resonator antennas (DRAs) Omnidirectional antenna Periodic structures Plasmons 

References

  1. 1.
    T. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. Phys. Rev. Lett. 93(10), 103903 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Chang, A.G. Mann, A.N. Luiten, D.G. Blair, Measurements of radiation pressure effect in cryogenic sapphire dielectric resonators. Phys. Rev. Lett. 79(11), 2141 (1997)CrossRefGoogle Scholar
  3. 3.
    A.A. Savchenkov, V.S. Ilchenko, A.B. Matsko, L. Maleki, Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A 70(5), 051804 (2004)CrossRefGoogle Scholar
  4. 4.
    S.A. Long, M.W. McAllister, L.C. Shen, The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. 31, 406–412 (1983)CrossRefGoogle Scholar
  5. 5.
    Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, R. Vahldieck, Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band. IEEE Trans. Antennas Propag. 56(11), 3589–3592 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Kianinejad, Z.N. Chen, L. Zhang, W. Liu, C.W. Qiu, Spoof plasmon-based slow-wave excitation of dielectric resonator antennas. IEEE Trans. Antennas Propag. 64(6), 2094–2099 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Petosa, Dielectric Resonator Antenna Handbook (Artech House, 2007)Google Scholar
  8. 8.
    K.W. Leung, K.Y. Chow, K.M. Luk, E.K.N. Yung, Low-profile circular disk DR antenna of very high permittivity excited by a microstripline. Electron. Lett. 33(12), 1004–1005 (1997)CrossRefGoogle Scholar
  9. 9.
    A. Petosa, A. Ittipiboon, Dielectric resonator antennas: a historical review and the current state of the art. Antennas Propag. Mag. IEEE 52(5), 91–116 (2010)CrossRefGoogle Scholar
  10. 10.
    C. Soras, M. Karaboikis, G. Tsachtsiris, V. Makios, Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band. Antennas Propag. Mag. IEEE 44(1), 37–44 (2002)CrossRefGoogle Scholar
  11. 11.
    D. Chizhik, J. Ling, R.A. Valenzuela, The effect of electric field polarization on indoor propagation, in IEEE 1998 International Conference in Universal Personal Communications, 1998, vol. 1, pp. 459–462Google Scholar
  12. 12.
    X. Qing, Z.N. Chen, Metamaterial-based wideband horizontally polarized omnidirectional 5-GHz WLAN antenna array, in Antennas and Propagation (EuCAP), 2014 8th European Conference on, 2014, pp. 605–608Google Scholar
  13. 13.
    R.M. Honda, R.R. Johnson, Horizontally-polarized omni-directional antenna. Google Patents, 2011Google Scholar
  14. 14.
    K. Wei, Z. Zhang, Z. Feng, M.F. Iskander, A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns. IEEE Trans. Antennas Propag. 60(6), 2702–2710 (2012)CrossRefGoogle Scholar
  15. 15.
    R.A. Kranenburg, S.A. Long, Microstrip transmission line excitation of dielectric resonator antennas. Electron. Lett. 24(18), 1156–1157 (1988)CrossRefGoogle Scholar
  16. 16.
    K.W. Leung, K.M. Luk, E.K.N. Yung, Spherical cap dielectric resonator antenna using aperture coupling. Electron. Lett. 30(17), 1366–1367 (1994)CrossRefGoogle Scholar
  17. 17.
    R.A. Kranenburg, S.A. Long, J.T. Williams, Coplanar waveguide excitation of dielectric resonator antennas. IEEE Trans. Antennas Propag. 39, 119–122 (1991)CrossRefGoogle Scholar
  18. 18.
    D. Guha, A. Banerjee, C. Kumar, Y.M.M. Antar, New technique to excite higher-order radiating mode in a cylindrical dielectric resonator antenna. IEEE Antennas Wirel. Propag. Lett. 13, 15–18 (2014)CrossRefGoogle Scholar
  19. 19.
    D. Guha, P. Gupta, C. Kumar, Dualband cylindrical dielectric resonator antenna employing and modes excited by new composite aperture. IEEE Trans. Antennas Propag. 63(1), 433–438 (2015)CrossRefzbMATHGoogle Scholar
  20. 20.
    L. Zou, C. Fumeaux, A cross-shaped dielectric resonator antenna for multifunction and polarization diversity applications. IEEE Antennas Wirel. Propag. Lett. 10, 742–745 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Guha, A. Banerjee, C. Kumar, Y.M.M. Antar, Higher order mode excitation for high-gain broadside radiation from cylindrical dielectric resonator antennas. IEEE Trans. Antennas Propag. 60(1), 71–77 (2012)CrossRefGoogle Scholar
  22. 22.
    S.B. Cohn, Microwave bandpass filters containing high-Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 16(4), 218–227 (1968)CrossRefGoogle Scholar
  23. 23.
    E.H. Lim, K.W. Leung, Use of the dielectric resonator antenna as a filter element. IEEE Trans. Antennas Propag. 56(1), 5–10 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Zou, C. Fumeaux, Horizontally polarized omnidirectional dielectric resonator antenna, in Microwave Conference Proceedings (APMC), 2011 Asia-Pacific, 2011, pp. 849–852Google Scholar
  25. 25.
    L. Zou, D. Abbott, C. Fumeaux, Omnidirectional cylindrical dielectric resonator antenna with dual polarization. IEEE Antennas Wirel. Propag. Lett. 11, 515–518 (2012)CrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations