Reprogramming of Cells by Lactic Acid Bacteria

  • Naofumi Ito
  • Kunimasa Ohta


Living organisms have been classified into three domains—archaea, eukaryota, and prokaryota—based on their cell structure and genetic evolution (Woese CR, Kandler O, Wheelis ML. Proc Natl Acad Sci USA 87:4576–4579, 1990). The eukaryotic cells have organelles that originated from prokaryotes living within these cells as endosymbionts (Martin W, Hoffmeister M, Rotte C, Henze K. Biol Chem 382:1521–1539., 2001). Endosymbionts affected the evolution and diversity of living organisms by horizontal gene transfer (Woese CR. Proc Natl Acad Sci USA 99:8742–8747., 2002; Timmis JN, Ayliffe MA, Huang CY, Martin W. Nat Rev Genet 5:123–135., 2004). The origin of eukaryotic cells was explained by the endosymbiotic theory, which has been advanced and substantiated with microbiological evidence (Margulis L. Origin of eukaryotic cells: evidence and research implications for a theory of the origin and evolution of microbial, plant and animal cells on the precambrian earth. Yale University Press, New Heaven, 1970). The partnership between a primitive anaerobic eukaryotic predator cell and an aerobic bacterial cell was potentially established about 1.5 billion years ago. At present, it is widely believed that eubacteria infected archaebacteria, leading to the translocation of genomic DNA and the evolution of eukaryotic cells (Hartman H, Fedorov A. Proc Natl Acad Sci USA 99:1420–1425., 2002). Over time, endosymbiotic interactions and genomic scrambling in various organisms contributed to the generation of new organisms.

To examine whether a bacterial infection can alter cell fate, human dermal fibroblast (HDF) cells were co-cultured with lactic acid bacteria (LAB), which are known to have beneficial effects on the physiology of the host. We previously showed that when HDF cells were incorporated with LAB, the LAB-incorporated HDF cells formed clusters and expressed a subset of common pluripotent markers. Moreover, the LAB-incorporated cell clusters could differentiate into cells of any of the three germ layers, indicating successful reprogramming of the host HDF cells by LAB. In this review, we discuss the nuclear reprogramming mechanisms in the existing examples of cellular reprogramming by bacteria.


Reprogramming Multipotency Lactic acid bacteria Eukaryotic cells 



We thank all the members of our laboratory for their support and insightful discussions. This work was supported by KAKENHI (16674994, 16690582, 25650082), AMED-CREST (15652254), Kumamoto University’s Advanced Research Project “Stem Cell-Based Tissue Regeneration Research and Education Unit”, Mitsubishi Foundation, and Institute for Fermentation, Osaka.


  1. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra265. doi:6/237/237ra6510.1126/scitranslmed.3008599Google Scholar
  2. Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, Grana O, Megias D, Dominguez O, Martinez D, Manzanares M, Ortega S, Serrano M (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502:340–345. CrossRefPubMedGoogle Scholar
  3. Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C, Parsot C, Sansonetti PJ (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8:47–56. CrossRefPubMedGoogle Scholar
  4. Ashida H, Ogawa M, Kim M, Suzuki S, Sanada T, Punginelli C, Mimuro H, Sasakawa C (2011) Shigella deploy multiple countermeasures against host innate immune responses. Curr Opin Microbiol 14:16–23. CrossRefPubMedGoogle Scholar
  5. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661CrossRefGoogle Scholar
  6. Bedel A, Beliveau F, Lamrissi-Garcia I, Rousseau B, Moranvillier I, Rucheton B, Guyonnet-Dupérat V, Cardinaud B, de Verneuil H, Moreau-Gaudry F, Dabernat S (2017) Preventing pluripotent cell teratoma in regenerative medicine applied to hematology disorders. Stem Cells Transl Med 6:382–393. CrossRefPubMedGoogle Scholar
  7. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277CrossRefGoogle Scholar
  8. Bessede E, Staedel C, Acuna Amador LA, Nguyen PH, Chambonnier L, Hatakeyama M, Belleannee G, Megraud F, Varon C (2014) Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene 33:4123–4131. CrossRefPubMedGoogle Scholar
  9. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463CrossRefGoogle Scholar
  10. Browne HP, Neville BA, Forster SC, Lawley TD (2017) Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol.
  11. Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, Cosma CL, Ramakrishnan L (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505:218–222. CrossRefPubMedGoogle Scholar
  12. Cao M, Goodrich-Blair H (2017) Ready or not: microbial adaptive responses in dynamic symbiosis environments. J Bacteriol 199:e00883–e00816. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaudhari SN, Mukherjee M, Vagasi AS, Bi G, Rahman MM, Nguyen CQ, Paul L, Selhub J, Kipreos ET (2016) Bacterial folates provide an exogenous signal for C. elegans germline stem cell proliferation. Dev Cell 38:33–46. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Collins SM (2014) A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol 11:497–505. CrossRefPubMedGoogle Scholar
  15. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, Oehlers SH, Sisk DM, Jurcic Smith KL, Medvitz NA, Miller SE, Trinh LA, Fraser SE, Madden JF, Turner J, Stout JE, Lee S, Tobin DM (2016) Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45:861–876. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Douglas AE (2016) How multi-partner endosymbioses function. Nat Rev Microbiol 14:731–743. CrossRefPubMedGoogle Scholar
  18. Fernando SL, Britton WJ (2006) Genetic susceptibility to mycobacterial disease in humans. Immunol Cell Biol 84:125–137. CrossRefPubMedGoogle Scholar
  19. Fesel PH, Zuccaro A (2016) Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Curr Opin Microbiol 32:103–112. CrossRefPubMedGoogle Scholar
  20. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450. CrossRefPubMedGoogle Scholar
  21. Furuse Y, Finethy R, Saka HA, Xet-Mull AM, Sisk DM, Smith KL, Lee S, Coers J, Valdivia RH, Tobin DM, Cullen BR (2014) Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells. PLoS One 9:e106434. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286. CrossRefPubMedGoogle Scholar
  23. Gilbert SF, Bosch TC, Ledon-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622. CrossRefPubMedGoogle Scholar
  24. Gordon S (2008) Elie metchnikoff: father of natural immunity. Eur J Immunol 38:3257–3264. CrossRefPubMedGoogle Scholar
  25. Gouyer V, Dubuquoy L, Robbe-Masselot C, Neut C, Singer E, Plet S, Geboes K, Desreumaux P, Gottrand F, Desseyn JL (2015) Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier. Sci Rep 5:9577. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gu H, Zhao C, Zhang T, Liang H, Wang XM, Pan Y, Chen X, Zhao Q, Li D, Liu F, Zhang CY, Zen K (2017) Salmonella produce microRNA-like RNA fragment Sal-1 in the infected cells to facilitate intracellular survival. Sci Rep 7:2392. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14:188–202. CrossRefPubMedGoogle Scholar
  28. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMedGoogle Scholar
  29. Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci U S A 99:1420–1425. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hill JH, Franzosa EA, Huttenhower C, Guillemin K (2016) A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 5:e20145. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16:559–564. CrossRefPubMedGoogle Scholar
  32. Ikeda T, Uchiyama I, Iwasaki M, Sasaki T, Nakagawa M, Okita K, Masui S (2017) Artificial acceleration of mammalian cell reprogramming by bacterial proteins. Genes Cells.
  33. Itakura G, Kobayashi Y, Nishimura S, Iwai H, Takano M, Iwanami A, Toyama Y, Okano H, Nakamura M (2015) Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation. PLoS One 10:e0116413. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, Iida T, Ookubo T, Kojima K, Kashiwagi R, Yasutake K, Nakauchi H, Miyoshi H, Nagoshi N, Kohyama J, Iwanami A, Matsumoto M, Nakamura M, Okano H (2017) Fail-safe system against potential tumorigenicity after transplantation of iPSC Derivatives. Stem Cell Rep 8:673–684. CrossRefGoogle Scholar
  35. Ito N, Ohta K (2015) Reprogramming of human somatic cells by bacteria. Develop Growth Differ 57:305–312. CrossRefGoogle Scholar
  36. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS (2016) The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165:1708–1720. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S (2014) Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–165. CrossRefPubMedGoogle Scholar
  38. Kawashima T, Kosaka A, Yan H, Guo Z, Uchiyama R, Fukui R, Kaneko D, Kumagai Y, You DJ, Carreras J, Uematsu S, Jang MH, Takeuchi O, Kaisho T, Akira S, Miyake K, Tsutsui H, Saito T, Nishimura I, Tsuji NM (2013) Double-stranded RNA of intestinal commensal but not pathogenic bacteria triggers production of protective interferon-beta. Immunity 38:1187–1197. CrossRefPubMedGoogle Scholar
  39. Kleiner M, Wentrup C, Lott C, Teeling H, Wetzel S, Young J, Chang YJ, Shah M, NC VB, Zarzycki J, Fuchs G, Markert S, Hempel K, Voigt B, Becher D, Liebeke M, Lalk M, Albrecht D, Hecker M, Schweder T, Dubilier N (2012) Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci U S A 109:E1173–E1182. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lad SP, Li J, da Silva Correia J, Pan Q, Gadwal S, Ulevitch RJ, Li E (2007) Cleavage of p65/RelA of the NF-kappaB pathway by Chlamydia. Proc Natl Acad Sci U S A 104:2933–2938. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lagier J-C, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D (2015) Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 28:208–236. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Mattei PJ, Regnault B, Nahori MA, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H (2011) A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331:1319–1321. CrossRefPubMedGoogle Scholar
  43. Lechuga S, Ivanov AI (2017) Disruption of the epithelial barrier during intestinal inflammation: quest for new molecules and mechanisms. Biochim Biophys Acta 1864:1183–1194. CrossRefPubMedGoogle Scholar
  44. Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, Kim NH, Cha YH, Yang DH, Lee Y, Park GJ, Yook JI, Lee YC (2014) Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat Commun 5:4423. CrossRefPubMedGoogle Scholar
  45. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lienhardt C, Glaziou P, Uplekar M, Lonnroth K, Getahun H, Raviglione M (2012) Global tuberculosis control: lessons learnt and future prospects. Nat Rev Microbiol 10:407–416. CrossRefPubMedGoogle Scholar
  47. Lin YW, Huang CY, Chen YH, Shih CM, Tsao NW, Lin CY, Chang NC, Tsai CS, Tsai HY, Tsai JC, Huang PH, Li CY, Lin FY (2013) GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function. PLoS One 8:e84731. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. CrossRefPubMedGoogle Scholar
  49. Lu R, Wu S, Zhang YG, Xia Y, Liu X, Zheng Y, Chen H, Schaefer KL, Zhou Z, Bissonnette M, Li L, Sun J (2014) Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogene 3:e105. CrossRefGoogle Scholar
  50. Margulis L (1970) Origin of eukaryotic cells: evidence and research implications for a theory of the origin and evolution of microbial, plant and animal cells on the precambrian earth. Yale University Press, New HeavenGoogle Scholar
  51. Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539. CrossRefPubMedGoogle Scholar
  52. Masaki T, Qu J, Cholewa-Waclaw J, Burr K, Raaum R, Rambukkana A (2013) Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152:51–67. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Masaki T, McGlinchey A, Cholewa-Waclaw J, Qu J, Tomlinson SR, Rambukkana A (2014) Innate immune response precedes Mycobacterium leprae-induced reprogramming of adult Schwann cells. Cell Reprogram 16:9–17. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Matsuura Y, Kikuchi Y, Hosokawa T, Koga R, Meng XY, Kamagata Y, Nikoh N, Fukatsu T (2012) Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J 6:397–409. CrossRefPubMedGoogle Scholar
  55. Moran NA, Yun Y (2015) Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci U S A 112:2093–2096. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Moura ML, Dupnik KM, Sampaio GA, Nobrega PF, Jeronimo AK, do Nascimento-Filho JM, Miranda Dantas RL, Queiroz JW, Barbosa JD, Dias G, Jeronimo SM, Souza MC, Nobre ML (2013) Active surveillance of Hansen’s disease (leprosy): importance for case finding among extra-domiciliary contacts. PLoS Negl Trop Dis 7:e2093. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nakajima A, Negishi N, Tsurui H, Kadowaki-Ohtsuji N, Maeda K, Nanno M, Yamaguchi Y, Shimizu N, Yagita H, Okumura K, Habu S (2014) Commensal bacteria regulate thymic Aire expression. PLoS One 9:e105904. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ (2014) The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15:792–798. CrossRefPubMedGoogle Scholar
  59. Nishiyama K, Sugiyama M, Mukai T (2016) Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4:E34. CrossRefPubMedGoogle Scholar
  60. Ohta K, Kawano R, Ito N (2012) Lactic acid bacteria convert human fibroblasts to multipotent cells. PLoS One 7:e51866. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Okada TS (2004) From embryonic induction to cell lineages: revisiting old problems for modern study. Int J Dev Biol 48:739–742. CrossRefPubMedGoogle Scholar
  62. Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A (2010) Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 6:e1000995. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P (2013) Genomic variation landscape of the human gut microbiome. Nature 493:45–50. CrossRefPubMedGoogle Scholar
  64. Sebe-Pedros A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nat Rev Genet 18:498–512. CrossRefPubMedGoogle Scholar
  65. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL (2016) Biomedical applications of nisin. J Appl Microbiol 120:1449–1465. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Smith CS, Aerts A, Saunderson P, Kawuma J, Kita E, Virmond M (2017) Multidrug therapy for leprosy: a game changer on the path to elimination. Lancet Infect Dis.
  67. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Putzer BM, Arauzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Scholer HR, Schambach A, Cantz T, Ott M, Sharma AD (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808. CrossRefPubMedGoogle Scholar
  68. Srivastava D, DeWitt N (2016) In vivo cellular reprogramming: the next generation. Cell 166:1386–1396. CrossRefPubMedGoogle Scholar
  69. Taguchi S, Ooi T, Mizuno K, Matsusaki H (2015) Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 99:9349–9360. CrossRefPubMedGoogle Scholar
  70. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. CrossRefGoogle Scholar
  71. Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tanabe S (2013) Perspectives of gene combinations in phenotype presentation. World J Stem Cells 5:61–67. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J (2010) Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 101:1925–1932. CrossRefPubMedGoogle Scholar
  74. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, Zhang X, Stallcup WB, Miao J, He X, Hurdle JG, Breault DT, Brass AL, Dong M (2016) Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538:350–355. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tegtmeyer N, Neddermann M, Asche CI, Backert S (2017) Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol 105:358–372. CrossRefPubMedGoogle Scholar
  76. The Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221. CrossRefGoogle Scholar
  77. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135. CrossRefPubMedGoogle Scholar
  78. Wang X, Yang Y, Huycke MM (2015) Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut 64:459–468. CrossRefPubMedGoogle Scholar
  79. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci U S A 99:8742–8747. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci U S A 87:4576–4579CrossRefGoogle Scholar
  81. Yan H, Ohno N, Tsuji NM (2013) The role of C-type lectin receptors in immune homeostasis. Int Immunopharmacol 16:353–357. CrossRefPubMedGoogle Scholar
  82. Zhao Y, Zhao T, Guan J, Zhang X, Fu Y, Ye J, Zhu J, Meng G, Ge J, Yang S, Cheng L, Du Y, Zhao C, Wang T, Su L, Yang W, Deng H (2015) A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell 163:1678–1691. CrossRefPubMedGoogle Scholar
  83. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Developmental Neurobiology, Graduate School of Life SciencesKumamoto UniversityKumamotoJapan
  2. 2.Program for Leading Graduate Schools “HIGO Program”Kumamoto UniversityKumamotoJapan
  3. 3.International Research Core for Stem Cell-based Developmental MedicineKumamoto UniversityKumamotoJapan
  4. 4.Japan Agency for Medical Research and Development (AMED)TokyoJapan

Personalised recommendations