Skip to main content

Recent Progress Toward RNA Manipulation with Engineered Pentatricopeptide Repeat Proteins

  • Chapter
  • First Online:
Applied RNA Bioscience

Abstract

Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are widely distributed in plants. They contain 2 to 30 repeating units of ~35-amino acid PPR motifs. They are known to play important roles in RNA processing, RNA editing, and translational regulation. Recent studies on the RNA recognition mode of PPR proteins revealed that one PPR motif interacts with one nucleotide. In addition, it was revealed that amino acids at three specific positions in a single motif serve to specify its binding base. Thus, mutation of these amino acids can cause a modification of the binding specificity of PPR motifs. Indeed, the engineered PPR motifs fused with various effector domains are shown to bind to and manipulate RNAs in a controlled manner. In this review, we summarize the recent progress in structural studies on PPR motifs. We focus on their RNA recognition mode and discuss the potentials of PPR as novel, versatile tools for RNA manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abil Z, Denard CA, Zhao H (2014) Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J Biol Eng 8:7

    Article  Google Scholar 

  • Anantharaman V, Aravind L (2006) The NYN domains, novel predicted RNases with a PIN domain-linker fold. RNA Biol 3:18–27

    Article  CAS  Google Scholar 

  • Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acids code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910

    Article  CAS  Google Scholar 

  • Baron-Benhamou J, Gehring NH, Kulozik AE, Hetze MW (2004) Using the λN peptide to tether proteins to RNAs. Methods Mol Biol 257:135–153

    CAS  PubMed  Google Scholar 

  • Bhandari D, Guha K, Bhaduri N, Saha P (2011) Ubiquitination of mRNA cycling sequence binding protein from Leishmania donovani (LdCSBP) modulates the RNA endonuclease activity of its Smr domain. FEBS Lett 585:809–813

    Article  CAS  Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621

    Article  CAS  Google Scholar 

  • Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16:95–109

    Article  CAS  Google Scholar 

  • Caponigro G, Parker R (1996) mRNA turnover in yeast promoted by the MATalpha1 instability element. Nucleic Acids Res 24:4304–4312

    Article  CAS  Google Scholar 

  • Chen Y, Varani G (2013) Engineering RNA-binding proteins for biology. FEBS J 280:3734–3754

    Article  CAS  Google Scholar 

  • Choudhury R, Tsai YS, Dominguez D, Wang Y, Wand Z (2012) Engineering RNA endonucleases with customized sequence specificities. Nat Commun 3:1147

    Article  Google Scholar 

  • Colas des Francs-Small C, Falcon de Longevialle A, Li Y, Lowe E, Tanz SK, Smith C, Bevan MW, Small I (2014) The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial complex 1. Plant Physiol 165:1409–1416

    Article  Google Scholar 

  • Dahan J, Mireau H (2013) The Rf and Rf-linker PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 19:1469–1476

    Article  Google Scholar 

  • Edwards TA, Pyle SE, Whartsom RP, Aggarwal AK (2001) Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105:281–289

    Article  CAS  Google Scholar 

  • Ferré-D’Amaré AR (2010) Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods 52:159–167

    Article  Google Scholar 

  • Ferré-D’Amaré AR (2016) Use of the U1A protein to facilitate crystallization and structure determination of large RNAs. Methods Mol Biol 1320:67–76

    Article  Google Scholar 

  • Frankel AD, Biancalana S, Hudson D (1989) Activity of synthetic peptide from the Tat protein of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86:7397–7401

    Article  CAS  Google Scholar 

  • Fujii S, Bond CS, Small ID (2010) Selection patterns on restorer-linker genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci U S A 108:1723–1728

    Article  Google Scholar 

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    Article  CAS  Google Scholar 

  • Gobert A, Gutmann B, Taschner A, Gößringer M, Holzmann J, Hartmann R, Rossmanith W, Giege P (2010) A single Arabidopsis organelle protein has RNase P activity. Nat Struct Mol Biol 17:740–744

    Article  CAS  Google Scholar 

  • Gobert A, Pinker F, Fuchsbauser NO, Gutmann B, Boutin R, Robin P, Sauter C, Giege P (2013) Structural insights into protein-only RNase P complexed with tRNA. Nat Commun 4:1353

    Article  Google Scholar 

  • Gray NK, Hentze MW (1994) Iron regulatory protein prevents binding of the 43S translation pre-initiation complex ferritin and eALAS mRNAs. EMBO J 13:3882–3891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorio ED, Preiss T, Henize MV (1999) Translation drive by an eIF4G core domain in vivo. EMBO J 18:4865–4874

    Article  Google Scholar 

  • Gutmann B, Gobert A, Giege P (2012) PRORP proteins support RNase P activity in both organelles and the nucleus in Arabidopsis. Genes Dev 26:1022–1027

    Article  CAS  Google Scholar 

  • Howard MJ, Lim WH, Fierke CA, Koutmos M (2012) Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5′ processing. Proc Natl Acad Sci U S A 109:16149–16154

    Article  CAS  Google Scholar 

  • Imai T, Nakmura T, Maeda T, Nakayama K, Gao X, Nakashima T, Kakuta Y, Kimura M (2014) Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nuclease bases at TΨC loop in precursor tRNAs. Biochem Biophys Res Commun 450:1541–1546

    Article  CAS  Google Scholar 

  • Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K (2008) Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J 55:619–628

    Article  CAS  Google Scholar 

  • Kobayashi T, Yagi Y, Nakamura T (2016) Development of genome engineering tools from plant-specific PPR proteins using animal cultured cells. In: Murata M (ed) Chromosome and genomic engineering in plants, vol 1469. Springer, Heidelberg, pp 147–155

    Chapter  Google Scholar 

  • Kotera E, Tasaka M, Shinkanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  CAS  Google Scholar 

  • Lim F, Peabody DS (2002) RNA recognition site of PP 7 coat protein. Nucleic Acids Res 30:4138–4144

    Article  CAS  Google Scholar 

  • Liu S, Melonek J, Boykin LM, Small I, Howel KA (2013) PPR-SMRs: ancient proteins with enigmatic functions. RNA Biol 10:1501–1511

    Article  CAS  Google Scholar 

  • Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113:93–99

    Article  CAS  Google Scholar 

  • Nakamura T, Yagi Y, Kobayashi K (2012) Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA binding proteins for organellar RNAs in plants. Plant Cell Physiol 53:1171–1179

    Article  CAS  Google Scholar 

  • Pankert T, Jegou T, Caudro-Herger M, Rippe K (2017) Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods S1046–2023:30471–30476

    Google Scholar 

  • Prinkry J, Rojas M, Schuster G, Barkan A (2011) Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci U S A 108:415–420

    Article  Google Scholar 

  • Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D (2011) Structure of human mitochondrial RNA polymerase. Nature 478:269–273

    Article  CAS  Google Scholar 

  • Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59:423–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Zhang D, Guan Z, Liu Y, Yang Z, Yang Y, Wang X, Wang Q, Zhang Q, Fan S, Zou T, Yin P (2016) Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat Commun 7:11285

    Article  CAS  Google Scholar 

  • Uyttewaal M, Arnal N, Quadrabo M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F (2008) Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 20:3331–3345

    Article  CAS  Google Scholar 

  • Wang X, McLachlan J, Zamore PD, Hall TM (2001) Modular recognition of RNA by a human pumilio-homology domain. Cell 110:501–512

    Article  Google Scholar 

  • Wang Y, Wang Z, Tanaka Hall TM (2013) Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism. FEBS J 280:3755–3767

    Article  CAS  Google Scholar 

  • Wilinski D, Qiu C, Lapointe CP, Nevil M, Champbell ZT, Tanaka Hall TM, Wicken M (2015) RNA regulatory networks diversified through curvature of the PUF protein scaffold. Nat Commun 6:8213

    Article  CAS  Google Scholar 

  • Wilusz CJ, Gao M, Jones CL, Wilusz J, Peltz SW (2001) Poly(A)-binding proteins regulate mRNA degradation and decapping in yeast cytoplasmic extracts. RNA 7:11416–11424

    Google Scholar 

  • Yagi Y, Hayashi S, Kobayashi K, Hirayama T, Nakamura T (2013a) Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS One 8:e57286

    Article  CAS  Google Scholar 

  • Yagi Y, Tachikawa M, Noguchi H, Satoh S, Obokata J, Nakamura T (2013b) Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biol 10:1236–1242

    Article  Google Scholar 

  • Yagi Y, Nakamura T, Small I (2014) The potential for manipulation RNA with pentatricopeptide repeat proteins. Plant J 78:772–782

    Article  CAS  Google Scholar 

  • Zhang J, McCann KL, Qiu C, Gonzalez LE, Baserga SJ, Tanaka Hall TM (2016) Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Nat Commun 7:13085

    Article  CAS  Google Scholar 

  • Zhou W, Lu Q, Li Q, Wang L, Ding S, Zhang A, Wen X, Zhang L, Lu C (2017) PPR-SMR protein SOT1 has RNA endonuclease activity. Proc Natl Acad Sci U S A 114:1554–1563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imai, T., Yagi, Y., Nakamura, T. (2018). Recent Progress Toward RNA Manipulation with Engineered Pentatricopeptide Repeat Proteins. In: Masuda, S., Izawa, S. (eds) Applied RNA Bioscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-8372-3_10

Download citation

Publish with us

Policies and ethics