Skip to main content

ECG Biometric Analysis Using Walsh–Hadamard Transform

  • Conference paper
  • First Online:
Advances in Data and Information Sciences

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 38))

Abstract

The electrocardiogram (ECG) signal expresses unique cardiac features among individuals. This paper proposes a novel method to human identification using ECG. The proposed method utilizes a band-pass filter for quality check and autocorrelation (AC) for feature extraction. Furthermore, the Walsh–Hadamard transform (WHT) is used for feature transformation. To get cost- and time-efficient classification performance, the dimensionality of feature vector is reduced using linear discriminant analysis (LDA). Experimental results show the best identification rate of 95 and 97% over MIT-BIH arrhythmia database and QT database, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh YN, Singh SK (2013) Identifying individuals using eigenbeat features of electrocardiogram. J Eng 2013:8 (Article ID 539284)

    Google Scholar 

  2. Singh YN (2014) Individual identification using linear projection of heartbeat features. Appl Comput Intell Soft Comput 2014:14. https://doi.org/10.1155/2014/602813 (Article ID 602813)

  3. Pouryayevali S (2015) ECG biometrics: new algorithm and multimodal biometric system, Master of applied science thesis, University of Toronto

    Google Scholar 

  4. Gerd W, Manuel S, Dieter K, Ralf-Dieter B, Clemens E (2007) Verification of humans using the electrocardiogram. Elsevier Pattern Recognit Lett 28:1172–1175

    Google Scholar 

  5. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Google Scholar 

  6. Biel L, Pettersson O, Philipson L, Wide P (2001) ECG analysis: a new approach in human identification. IEEE Trans Instrum Meas 50(3):808–812

    Google Scholar 

  7. Shen TW, Tompkins WJ, Hu YH (2002) One-lead ECG for identity verification. In: Proceedings of the second joint EMBS/BMES conference, Houston, 23–26 October, pp 62–63

    Google Scholar 

  8. Singh YN, Gupta P (2008) ECG to individual identification. In: Proceedings of the 2nd IEEE international conference on biometrics: theory, applications and systems (BTAS 08), pp 1–8

    Google Scholar 

  9. Singh YN, Gupta P (2011) Correlation-based classification of heartbeats for individual identification. Soft Comput 15(3):449–460

    Google Scholar 

  10. Singh YN (2015) Human recognition using fisher’s discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing Elsevier 167:322–335

    Google Scholar 

  11. Plataniotis K, Hatzinakos D, Lee J (2006) ECG biometric recognition without fiducial detection. In: Proceedings of biometrics symposiums (BSYM), Baltimore, Maryland, USA

    Google Scholar 

  12. Chan ADC, Hamdy MM, Badre A, Badee V (2008) Wavelet distance measure for person identification using electrocardiograms. IEEE Trans Instrum Meas 57(2):248–253

    Google Scholar 

  13. Odinaka I, Lai PH, Kaplan A, O’Sullivan J, Sirevaag E, Kristjansson S, Sheffield A, Rohrbaugh J (2010) ECG biometrics: a robust short-time frequency analysis. In :Proceedings of IEEE international workshop on information forensics and security, pp 1–6

    Google Scholar 

  14. Agrafioti F, Hatzinakos D (2008) ECG based recognition using second order statistics. IEEE Computer Society, pp 82–87

    Google Scholar 

  15. Wang Y, Agrafioti F, Hatzinakos D, Plataniotis KN (2008) Analysis of human electrocardiogram for biometric recognition. EURASIP J Adv Signal Process 2008:1–11. https://doi.org/10.1155//148658 (Article ID 148658)

  16. Li M, Narayanan S (2010) Robust ECG biometrics by fusing temporal and cepstral information. In: 2010 20th International conference pattern recognition (ICPR), pp 1326–1329

    Google Scholar 

  17. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236

    Google Scholar 

  18. Beer T (1981) Walsh transforms. Am J Phys 49(5):466–472

    Google Scholar 

  19. Physionet, Physiobank archives, Massachusetts Institute of Technology Cambridge. https://www.physionet.org/physiobank/database/#ecg

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their feedback and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Srivastva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastva, R., Singh, Y.N. (2018). ECG Biometric Analysis Using Walsh–Hadamard Transform. In: Kolhe, M., Trivedi, M., Tiwari, S., Singh, V. (eds) Advances in Data and Information Sciences. Lecture Notes in Networks and Systems, vol 38. Springer, Singapore. https://doi.org/10.1007/978-981-10-8360-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8360-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8359-4

  • Online ISBN: 978-981-10-8360-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics