ECG Biometric Analysis Using Walsh–Hadamard Transform

  • Ranjeet SrivastvaEmail author
  • Yogendra Narain Singh
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 38)


The electrocardiogram (ECG) signal expresses unique cardiac features among individuals. This paper proposes a novel method to human identification using ECG. The proposed method utilizes a band-pass filter for quality check and autocorrelation (AC) for feature extraction. Furthermore, the Walsh–Hadamard transform (WHT) is used for feature transformation. To get cost- and time-efficient classification performance, the dimensionality of feature vector is reduced using linear discriminant analysis (LDA). Experimental results show the best identification rate of 95 and 97% over MIT-BIH arrhythmia database and QT database, respectively.


Human identification Electrocardiogram Walsh–Hadamard transform Discriminant analysis 



The authors would like to thank the anonymous reviewers and the editor for their feedback and useful suggestions.


  1. 1.
    Singh YN, Singh SK (2013) Identifying individuals using eigenbeat features of electrocardiogram. J Eng 2013:8 (Article ID 539284)Google Scholar
  2. 2.
    Singh YN (2014) Individual identification using linear projection of heartbeat features. Appl Comput Intell Soft Comput 2014:14. (Article ID 602813)
  3. 3.
    Pouryayevali S (2015) ECG biometrics: new algorithm and multimodal biometric system, Master of applied science thesis, University of TorontoGoogle Scholar
  4. 4.
    Gerd W, Manuel S, Dieter K, Ralf-Dieter B, Clemens E (2007) Verification of humans using the electrocardiogram. Elsevier Pattern Recognit Lett 28:1172–1175Google Scholar
  5. 5.
    Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20Google Scholar
  6. 6.
    Biel L, Pettersson O, Philipson L, Wide P (2001) ECG analysis: a new approach in human identification. IEEE Trans Instrum Meas 50(3):808–812Google Scholar
  7. 7.
    Shen TW, Tompkins WJ, Hu YH (2002) One-lead ECG for identity verification. In: Proceedings of the second joint EMBS/BMES conference, Houston, 23–26 October, pp 62–63Google Scholar
  8. 8.
    Singh YN, Gupta P (2008) ECG to individual identification. In: Proceedings of the 2nd IEEE international conference on biometrics: theory, applications and systems (BTAS 08), pp 1–8Google Scholar
  9. 9.
    Singh YN, Gupta P (2011) Correlation-based classification of heartbeats for individual identification. Soft Comput 15(3):449–460Google Scholar
  10. 10.
    Singh YN (2015) Human recognition using fisher’s discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing Elsevier 167:322–335Google Scholar
  11. 11.
    Plataniotis K, Hatzinakos D, Lee J (2006) ECG biometric recognition without fiducial detection. In: Proceedings of biometrics symposiums (BSYM), Baltimore, Maryland, USAGoogle Scholar
  12. 12.
    Chan ADC, Hamdy MM, Badre A, Badee V (2008) Wavelet distance measure for person identification using electrocardiograms. IEEE Trans Instrum Meas 57(2):248–253Google Scholar
  13. 13.
    Odinaka I, Lai PH, Kaplan A, O’Sullivan J, Sirevaag E, Kristjansson S, Sheffield A, Rohrbaugh J (2010) ECG biometrics: a robust short-time frequency analysis. In :Proceedings of IEEE international workshop on information forensics and security, pp 1–6Google Scholar
  14. 14.
    Agrafioti F, Hatzinakos D (2008) ECG based recognition using second order statistics. IEEE Computer Society, pp 82–87Google Scholar
  15. 15.
    Wang Y, Agrafioti F, Hatzinakos D, Plataniotis KN (2008) Analysis of human electrocardiogram for biometric recognition. EURASIP J Adv Signal Process 2008:1–11. (Article ID 148658)
  16. 16.
    Li M, Narayanan S (2010) Robust ECG biometrics by fusing temporal and cepstral information. In: 2010 20th International conference pattern recognition (ICPR), pp 1326–1329Google Scholar
  17. 17.
    Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236Google Scholar
  18. 18.
    Beer T (1981) Walsh transforms. Am J Phys 49(5):466–472Google Scholar
  19. 19.
    Physionet, Physiobank archives, Massachusetts Institute of Technology Cambridge.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyBabu Banarasi Das Northern India Institute of TechnologyLucknowIndia
  2. 2.Department of Computer Science and EngineeringInstitute of Engineering and TechnologyLucknowIndia

Personalised recommendations