Skip to main content

Active Vibration Control Based on LQR Technique for Two Degrees of Freedom System

  • Conference paper
  • First Online:
Computational Signal Processing and Analysis

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 490))

Abstract

Recently, researchers have proposed active vibration control technique to control undesired vibrations in structures. In this work, procedure of active vibration control is discussed in a simple way. For that, the mathematical model of structure, the optimal placement of sensor and actuator, and control laws of active vibration control are discussed. Finally, vibration control using LQR technique has been applied on two degrees of freedom system to illustrate the active vibration control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pisoni AC, Santolini C, Hauf DE, Dubowsky S (1995) Displacements in a vibrating body by strain gage measurements. In: Proceedings-SPIE the International Society for Optical Engineering, pp 119–119

    Google Scholar 

  2. Qiu ZC, Zhang XM, Wang YC, Wu ZW (2009) Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. J Sound Vib 326:438–455

    Article  Google Scholar 

  3. Sarabi Kheiri B, Sharma M, Kaur D (2016) Simulation of a new technique for vibration tests, based upon active vibration control. IETE J Res 63:1–9

    Google Scholar 

  4. Kapuria S, Yasin MY (2010) Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model. J Sound Vib 329:3247–3265

    Article  Google Scholar 

  5. Clark YG, Fuller RLCR, Zander AC (1994) Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene fluoride (PVDF) modal sensors. J Vib Acoust 116:303–308

    Article  Google Scholar 

  6. Shinya S (2013) Vibration control of a structure using magneto-rheological grease damper. Front Mech Eng 8:261–267

    Article  Google Scholar 

  7. Li J, Gruver WA (1998) An electrorheological fluid damper for vibration control. In: IEEE conference ICRA, pp 2476–2481.

    Google Scholar 

  8. Kheiri Sarabi B, Sharma M, Kaur D, Kumar N (2016) A Novel technique for generating desired vibrations in structure. Integr Ferroelectr 176:236–250

    Article  Google Scholar 

  9. Simões RC, Steffen V, Der Hagopian J, Mahfoud J (2007) Modal active vibration control of a rotor using piezoelectric stack actuators. J Vib Control 13:45–64

    Article  MATH  Google Scholar 

  10. Baillargeon BP, Vel SS (2005) Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators. J Sound Vib 282:781–804

    Article  Google Scholar 

  11. Inman DJ (2006) Vibration with control. Wiley, West Sessex

    Book  Google Scholar 

  12. Crawley E, de Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:1373–1385

    Article  Google Scholar 

  13. Raja S, Prathap G, Sinha PK (2002) Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators. Smart Mater Struct 11:63

    Article  Google Scholar 

  14. Chandrashekhara K, Tanneti R (1995) Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators. Smart Mater Struct 4(1995):281–290

    Article  Google Scholar 

  15. Kheiri Sarabi B, Sharma M, Kaur D (2014) Techniques for creating mathematical model of structures for active vibration control. In: IEEE conference (RAECS)

    Google Scholar 

  16. Bailey T, Ubbard JE (1995) Distributed piezoelectric-polymer active vibration control of a cantilever beam. J Guid Control Dyn 8:605–611

    Article  Google Scholar 

  17. Kheiri Sarabi B, Sharma M, Kaur D (2017) An optimal control based technique for generating desired vibrations in a structure. Iran J Sci Technol 40:219–228

    Google Scholar 

  18. Baillargeon BP, Senthil Vel S (2005) Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators. J Sound Vib 282:781–804

    Article  Google Scholar 

  19. Kheiri Sarabi B, Maghade DK, Malwatkar GM (2012) An empirical data driven based control loop performance assessment of multi-variate systems. In: IEEE conference (INDICON), pp 70–74

    Google Scholar 

  20. Gou B (2008) Optimal placement of PMUs by integer linear programming. IEEE Trans Power Syst 23:1525–1526

    Article  Google Scholar 

  21. Theodorakatos N, Manousakis N, Korres G (2015) Optimal placement of phasor measurement units with linear and non-linear models. Electr Power Compon Syst 43:357–373

    Article  Google Scholar 

  22. Gou B (2008) Generalized integer linear programming formulation for optimal PMU placement. IEEE Trans Power Syst 23

    Google Scholar 

  23. Powell M (1978) The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Nonlinear programming 3. Academic Press

    Google Scholar 

  24. Vanderplaats GN (1984) An efficient feasible directions algorithm for design synthesis. AIAA J 22:1633–1640

    Article  MathSciNet  Google Scholar 

  25. Rajdeep D, Ganguli R, Mani V (2011) Swarm intelligence algorithms for integrated optimization of piezo-electric actuator and sensor placement and feedback gains. Smart Mater Struct 20:1–14

    Google Scholar 

  26. Jose M, Simoes M (2006) Optimal design in vibration control of adaptive structure using a simulating annealing algorithm. Compos Struct 75:79–87

    Article  Google Scholar 

  27. Han JH, Lee I (1999) Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Mater Struct 8:257–267

    Article  Google Scholar 

  28. Kincaid RK, Keith EL (1998) Reactive Tabu search and sensor selection in active structural acoustic control problems. J Heuristics 4:199–220

    Article  MATH  Google Scholar 

  29. Chen L, Lin C, Wang C (2002) Dynamic stability analysis and control of a composite beam with piezoelectric layers. Compos Struct 56:97–109

    Article  Google Scholar 

  30. Beijen MA, van Dijk J, Hakvoort WBJ, Heertjes MF (2014) Self-tuning feedforward control for active vibration isolation of precision machines. In: Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa

    Google Scholar 

  31. Jovanovic AM, Simonovic AM, Zoric ND, Luki NS, Stupar SN, Ilic SS (2013) Experimental studies on active vibration control of a smart composite beam using a PID controller. Smart Mater Struct 22

    Google Scholar 

  32. Lam KY, Peng XQ, Liu GR, Reddy JN (1997) A finite-element model for piezo-electric composite laminates. Smart Mater Struct 6:583–591

    Article  Google Scholar 

  33. Xu SX, Koko TS (2004) Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elem Anal Des 40:241–262

    Article  Google Scholar 

  34. Dong XJ, Meng G, Peng JC (2006) Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study. J Sound Vib 297:680–693

    Article  MathSciNet  MATH  Google Scholar 

  35. Hu YR, Ng A (2005) Active robust vibration control of flexible structures. J Sound Vib 288:43–56

    Article  MathSciNet  MATH  Google Scholar 

  36. Gu H, Song G (2007) Active vibration suppression of a smart flexible beam using a sliding mode based controller. J Vib Control 13:1095–1107

    Article  MATH  Google Scholar 

  37. Lei L, Benli W (2008) Multi objective robust active vibration control for flexure jointed struts of Stewart platforms via H∞ and μ synthesis. Chin J Aeronaut 21:125–133

    Article  Google Scholar 

  38. Marinaki M, Marinakis Y, Stavroulakis GE (2010) Fuzzy control optimized by PSO for vibration suppression of beams. Control Eng Pract 18:618–629

    Article  Google Scholar 

  39. Chen CW, Yeh K, Chiang WL, Chen CY, Wu DJ (2007) Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model. J Vib Control 13:1519–1534

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Kheiri Sarabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kheiri Sarabi, B., Sharma, M., Kaur, D. (2018). Active Vibration Control Based on LQR Technique for Two Degrees of Freedom System. In: Nandi, A., Sujatha, N., Menaka, R., Alex, J. (eds) Computational Signal Processing and Analysis. Lecture Notes in Electrical Engineering, vol 490. Springer, Singapore. https://doi.org/10.1007/978-981-10-8354-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8354-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8353-2

  • Online ISBN: 978-981-10-8354-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics