Skip to main content

Liquid Metal Embrittlement of Galvanized Steels During Industrial Processing: A Review

  • Conference paper
  • First Online:
Transactions on Intelligent Welding Manufacturing

Part of the book series: Transactions on Intelligent Welding Manufacturing ((TRINWM))

Abstract

Liquid metal embrittlement is the cause of reduction of elongation to failure and early fracture if normally ductile metals or alloys are stressed while in contact with liquid metals. Scientists have confirmed that many solid steel-liquid metal couples are subject to liquid metal embrittlement, one of them is solid steel-liquid zinc. Due to the wide use of zinc-coated galvanized steels, this couple has drawn much attention. This paper briefly introduces liquid metal embrittlement, with emphasis on the solid steel-liquid zinc couple and its occurrence in the process of industrial production in the literature. We first reviewed the findings that galvanized steels suffer embrittlement during experimental hot tensile test to understand its fundamental characteristics. We then summarized the occurrence of liquid metal embrittlement in galvanized steels during industrial processing, such as hot-dip galvanizing, hot stamping and welding.

The original version of this chapter was revised: Acknowledgement has been newly included and section heading has been changed. The erratum to this chapter is available at https://doi.org/10.1007/978-981-10-8330-3_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandes PJL, Jones DRH (1997) Mechanisms of liquid metal induced embrittlement. Int Mater Rev 42(6):251–261

    Article  Google Scholar 

  2. Nicholas MG, Old CF (1979) Liquid metal embrittlement. J Mater Sci 14(1):1–18

    Article  Google Scholar 

  3. Kamdar MH (1983) Liquid metal embrittlement. Treatise Mater Sci Technol 25(1):361–459

    Article  Google Scholar 

  4. Bauer KD, Todorova M, Hingerl K et al (2015) A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. Acta Mater 90:69–76

    Article  Google Scholar 

  5. Sample T, Fenici P, Kolbe H (1996) Liquid metal embrittlement susceptibility of welded MANET II (DIN 1.4914) in liquid Pb-17Li. J Nucl Mater 233:244–247

    Article  Google Scholar 

  6. Legris A, Nicaise G, Vogt JB et al (2000) Embrittlement of a martensitic steel by liquid lead. Scripta Mater 43(11):997–1001

    Article  Google Scholar 

  7. Hojna A, Di Gabriele F, Klecka J (2016) Characteristics and liquid metal embrittlement of the steel T91 in contact with lead–bismuth eutectic. J Nucl Mater 472:163–170

    Article  Google Scholar 

  8. Padmanabhan B, Salunkhe P, Nage D (2015) Liquid metal embrittlement of austenitic stainless steel fitting caused by copper contamination. J Fail Anal Prev 15(4):480

    Article  Google Scholar 

  9. Hémery S, Auger T, Courouau JL et al (2014) Liquid metal embrittlement of an austenitic stainless steel in liquid sodium. Corros Sci 83:1–5

    Article  Google Scholar 

  10. Clegg RE, Jones DRH (2003) Liquid metal embrittlement of tensile specimens of En19 steel by tin. Eng Fail Anal 10(1):119–130

    Article  Google Scholar 

  11. Ding N, Xu N, Guo W et al (2016) Liquid metal induced embrittlement of a nitrided clutch shell of a motorbike. Eng Fail Anal 61:54–61

    Article  Google Scholar 

  12. Nandi V, Bhat RR, Yatisha IN et al (2012) Liquid-metal-induced embrittlement in turbine casing segment screws of an aeroengine. J Fail Anal Prev 12(4):348–353

    Article  Google Scholar 

  13. Kuklik V, Kudlacek J (2016) Hot-dip galvanizing of steel structures. Butterworth-Heinemann, Boston, pp 30, 170

    Chapter  Google Scholar 

  14. Marder AR (2000) The metallurgy of zinc-coated steel. Prog Mater Sci 45(3):191–271

    Article  Google Scholar 

  15. Kikuchi M (1980) Liquid metal embrittlement of steels by liquid zinc. J Soc Mater Sci 29(317):181–186

    Article  Google Scholar 

  16. Nakasa K, Takei H, Matsuda M (1988) Crack propagation behavior in liquid zinc embrittlement of mild steel. J Soc Mater Sci 37(413):166–170

    Article  Google Scholar 

  17. Kikuchi M, Lezawa T (1982) Effect of stress-concentration factor on liquid metal embrittlement cracking of steel in molten zinc. J Soc Mater Sci 31(352):271–276

    Article  Google Scholar 

  18. Kikuchi M (1981) Liquid metal embrittlement cracking of notched rectangular steel plate in molten zinc. J Soc Mater Sci 30(329):194–199

    Article  Google Scholar 

  19. Nakasa K, Takei H, Takemoto S (1984) Effects of tensile speed, testing temperature and ferrite grain size on liquid zinc embrittlement in precracked specimens of mild steel. J Soc Mater Sci 33(372):1193–1198

    Article  Google Scholar 

  20. Beal C, Kleber X, Fabregue D et al (2011) Liquid zinc embrittlement of a high-manganese-content TWIP steel. Philos Mag Lett 91(4):297–303

    Article  Google Scholar 

  21. Beal C, Kleber X, Fabregue D et al (2012) Embrittlement of a zinc coated high manganese TWIP steel. Mater Sci Eng A 543:76–83

    Article  Google Scholar 

  22. Beal C, Kleber X, Fabregue D et al (2012) Liquid zinc embrittlement of twinning-induced plasticity steel. Scripta Mater 66(12):1030–1033

    Article  Google Scholar 

  23. Mendala J (2012) Liquid metal embrittlement of steel with galvanized coatings. IOP conference series-materials science and engineering, vol 35. IOP Publishing, Bristol, pp 1–8

    Google Scholar 

  24. Barthelmie J et al (2016) Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels. In: IOP conference series-materials science and engineering, vol 118. IOP Publishing, Bristol, pp 1–8

    Article  Google Scholar 

  25. Frappier R et al (2014) Embrittlement of steels by liquid zinc: crack propagation after grain boundary wetting. In: Advanced materials research, vol 922. Trans Tech Publications, Zurich, pp 161–166

    Article  Google Scholar 

  26. Jung G, Woo IS, Suh DW et al (2016) Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures. Met Mater Int 22(2):187–195

    Article  Google Scholar 

  27. Kang H, Cho L, Lee C et al (2016) Zn penetration in liquid metal embrittled TWIP steel. Metall Mater Trans A 47(6):2885–2905

    Article  Google Scholar 

  28. Schulz WD, Thiele M (2011) Hot-dip galvanizing and layer-formation technology. Handb Hot-Dip Galvanization 91–124

    Google Scholar 

  29. Mraz L, Lesay J (2009) Problems with reliability and safety of hot dip galvanized steel structures. Soldagem & Inspecao 14(2):184–190

    Article  Google Scholar 

  30. James MN (2009) Designing against LMAC in galvanised steel structures. Eng Fail Anal 16(4):1051–1061

    Article  Google Scholar 

  31. Carpio J, Casado JA, Álvarez JA et al (2009) Environmental factors in failure during structural steel hot-dip galvanizing. Eng Fail Anal 16(2):585–595

    Article  Google Scholar 

  32. Carpio J, Casado JA, Álvarez JA et al (2010) Stress corrosion cracking of structural steels immersed in hot-dip galvanizing baths. Eng Fail Anal 17(1):19–27

    Article  Google Scholar 

  33. Luithle A, Pohl M (2015) On the influence of cold deformation on liquid metal embrittlement of a steel in a liquid zinc bath. Mater Corros 66(12):1491–1497

    Article  Google Scholar 

  34. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118

    Article  Google Scholar 

  35. Feng GW et al (2016) Microcacks in galvannealed hot stamping 22MnB5 steel. In: Advanced high strength steel and press hardening-proceedings of the 2nd international conference. World Scientific, Changsha, pp 110–114

    Google Scholar 

  36. Lee CW, Fan DW, Sohn IR et al (2012) Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall Mater Trans A 43(13):5122–5127

    Article  Google Scholar 

  37. Cho L, Kang H, Lee C et al (2014) Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel. Scripta Mater 90:25–28

    Article  Google Scholar 

  38. Lee CW, Choi WS, Cho L et al (2015) Liquid-metal-induced embrittlement related microcrack propagation on Zn-coated press hardening steel. ISIJ Int 55(1):264–271

    Article  Google Scholar 

  39. Lee CW, De Cooman BC (2014) Microstructural evolution of the 55 Wt Pct Al-Zn coating during press hardening. Metall Mater Trans A 45(10):4499–4509

    Article  Google Scholar 

  40. Lee CW, Choi WS, Cho YR et al (2015) Microstructure evolution of a 55wt.% Al–Zn coating on press hardening steel during rapid heating. Surf Coat Technol 281:35–43

    Article  Google Scholar 

  41. Drillet P, Grigorieva R, Leuillier G et al (2013) Study of cracks propagation inside the steel on press hardened steel zinc based coatings. La Metallurgia Italiana 1:3–8

    Google Scholar 

  42. Kurz T, Luckeneder G, Manzenreiter T et al (2015) Zinc coated press-hardening steel-challenges and solutions. SAE technical paper No. 2015–01-0565

    Google Scholar 

  43. Kurz T, Larour P, Lackner J et al (2016) Press-hardening of zinc coated steel-characterization of a new material for a new process. In: IOP conference series-materials science and engineering, vol 159. IOP Publishing, Bristol, pp 1–16

    Article  Google Scholar 

  44. Seok HH, Mun JC, Kang CG (2015) Micro-crack in zinc coating layer on boron steel sheet in hot deep drawing process. Int J Precis Eng Manuf 16(5):919–927

    Article  Google Scholar 

  45. Sachdev AK, Brown TW (2015) Controlling liquid metal embrittlement in galvanized press-hardened components. US Patent Application 14/627,579

    Google Scholar 

  46. Zhang P, Xie J, Wang YX (2011) Effects of welding parameters on mechanical properties and microstructure of resistance spot welded DP600 joints. Sci Technol Weld Joining 16(7):567–574

    Article  Google Scholar 

  47. Gaul H, Weber G, Rethmeier M (2011) Influence of HAZ cracks on fatigue resistance of resistance spot welded joints made of advanced high strength steels. Sci Technol Weld Joining 16(5):440–445

    Article  Google Scholar 

  48. Wang XP, Zhang YQ, Ju JB et al (2016) Characteristics of welding crack defects and failure mode in resistance spot welding of DP780 steel. J Iron Steel Res Int 23(10):1104–1110

    Article  Google Scholar 

  49. Jia S, Zhang Y, Liu X et al (2015) Hot dip galvanized TRIP steel spot welding crack analysis. Electr Weld Mach 45(8):145–149

    Google Scholar 

  50. Wang X, Zhang Y, Ju J et al (2016) Effect of resistance spot welding process on welding spot crack defects of advanced high strength steel. Electr Weld Mach 46(6):96–100

    Google Scholar 

  51. Yan B, Zhu H, Lalam SH et al (2004) Spot weld fatigue of dual phase steels. SAE technical paper No. 2004-01-0511

    Google Scholar 

  52. Kim YG, Kim IJ, Kim JS et al (2014) Evaluation of surface crack in resistance spot welds of Zn-coated steel. Mater Trans 55(1):171–175

    Article  MathSciNet  Google Scholar 

  53. Barthelmie J, Schram A, Wesling V (2016) Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels. IOP Conference Series-Materials Science and Engineering, vol 118. IOP Publishing, Bristol, pp 1–8

    Google Scholar 

  54. Tolf E, Hedegård J, Melander A (2013) Surface breaking cracks in resistance spot welds of dual phase steels with electrogalvanised and hot dip zinc coating. Sci Technol Weld Joining 18(1):25–31

    Article  Google Scholar 

  55. Ashiri R, Haque MA, Ji CW et al (2015) Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scripta Mater 109:6–10

    Article  Google Scholar 

  56. Ashiri R, Shamanian M, Salimijazi HR et al (2016) Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scripta Mater 114:41–47

    Article  Google Scholar 

  57. Bruscato RM (1992) Liquid metal embrittlement of austenitic stainless steel when welded to galvanized steel. Welding Journal 71:455s–459s

    Google Scholar 

  58. Mori H, Nishimoto K (2012) Effect of chromium and nickel contents on liquid zinc embrittlement in heat affected zone of austenitic steels. Q J Jpn Weld Soc 30(1):42–49

    Article  Google Scholar 

  59. Pańcikiewicz K, Tuz L, Zielińska-Lipiec A (2014) Zinc contamination cracking in stainless steel after welding. Eng Fail Anal 39:149–154

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support from The National Key Research and Development Program of China, No.2017YFB0304400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ling, Z., Wang, M., Kong, L. (2018). Liquid Metal Embrittlement of Galvanized Steels During Industrial Processing: A Review. In: Chen, S., Zhang, Y., Feng, Z. (eds) Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-8330-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8330-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8329-7

  • Online ISBN: 978-981-10-8330-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics