Skip to main content

Decomposition Behavior of Metal-Ion Exchanged Clays

  • Chapter
  • First Online:
Fire Retardancy Behavior of Polymer/Clay Nanocomposites

Part of the book series: Springer Theses ((Springer Theses))

  • 357 Accesses

Abstract

This chapter deals with exploring the effect of different metal ions like Mg2+, Al3+, and Fe3+ present in/on MI-clays in altering the kinetics and/or decomposition mechanism of organic modifier, HDTMA-Br. The catalytic activity is seen to be a combined effect of Brønsted and Lewis acid characters associated with the metal ions. The effect varies significantly with the predominant cation in organically modified MI-clays (OMI-clays). Knowing the effect of each metal ion separately, the correlation between clay structural chemistry and organic decomposition onset is established.

This chapter is published as,

I.S. Zope, A. Dasari, G. Camino. Mater. Chem. Phys. 2015, 157, 69–79.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Humphrey, D. Boyd, Clay; Types, Properties and Uses (Nova Science Publishers Inc, New York, 2011)

    Google Scholar 

  2. C. Ravindra Reddy, G. Nagendrappa, B.S. Jai Prakash. Catal. Commun. 8, 241–246 (2007)

    Google Scholar 

  3. C. Breen, A. Moronta, J. Phys. Chem. B. 104, 2702–2708 (2000)

    Article  CAS  Google Scholar 

  4. P. Nawani, M.Y. Gelfer, B.S. Hsiao, A. Frenkel, J.W. Gilman, S. Khalid, Langmuir 23, 9808–9815 (2007)

    Article  CAS  Google Scholar 

  5. B. Thomas, V.G. Ramu, S. Gopinath, J. George, M. Kurian, G. Laurent, G.L. Drisko, S. Sugunan, Appl. Clay Sci. 53, 227–235 (2011)

    Article  CAS  Google Scholar 

  6. A.G. Zestos, C.L. Grinnell, L.J. Vinh, R.D. Pike, W.H. Starnes, J. Vinyl Addit. Technol. 15, 87–91 (2009)

    CAS  Google Scholar 

  7. F. Bergaya, G. Lagaly, Handbook of Clay Science Part A: Fundamentals, vol. 5A, 2nd edn., (Elsevier, Oxford, 2013)

    Google Scholar 

  8. C.N. Rhodes, D.R. Brown, J. Chem. Soc., Faraday Trans. 91, 1031–1035 (1995)

    Article  CAS  Google Scholar 

  9. P. Misaelides, F. Macasek, T. Pinnavaia, C. Colella, Natural Microporous Materials in Environmental Technology, vol. 362 (Springer Science+Business Media, B.V., Dordrecht, 1999)

    Google Scholar 

  10. V. Balek, Z. Málek, S. Yariv, G. Matuschek, J. Therm. Anal. Calorim. 56, 67–76 (1999)

    Article  CAS  Google Scholar 

  11. Y. Li, X. Wang, J. Wang, J. Therm. Anal. Calorim. 110, 1199–1206 (2012)

    Article  CAS  Google Scholar 

  12. G. Wulfsberg, Inorganic Chemistry (University Science Books, Sausalito, CA, 2000)

    Google Scholar 

  13. S.J. Hawkes, J. Chem. Educ. 73, 516 (1996)

    Article  CAS  Google Scholar 

  14. I. Persson, Pure Appl. Chem. 82, 1901–1917 (2010)

    Article  CAS  Google Scholar 

  15. S.S. Lee, P. Fenter, C. Park, N.C. Sturchio, K.L. Nagy, Langmuir 26, 16647–16651 (2010)

    Article  CAS  Google Scholar 

  16. V. Balek, M. Beneŝ, J. Ŝubrt, J.L. Pérez-Rodriguez, P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, J. Pascual-Cosp, J. Therm. Anal. Calorim. 92, 191–197 (2008)

    Article  CAS  Google Scholar 

  17. P.J. Wallis, A.L. Chaffee, W.P. Gates, A.F. Patti, J.L. Scott, Langmuir 26, 4258–4265 (2009)

    Article  CAS  Google Scholar 

  18. W. Grzybkowski, Pol. J. Environ. Stud. 15, 655–663 (2006)

    CAS  Google Scholar 

  19. B.J. Teppen, V. Aggarwal, Clays Clay Miner. 55, 119–130 (2007)

    Article  CAS  Google Scholar 

  20. R. Calvet, Hydration de la montmorillonite et diffusion des cations compensateurs (Universite de Paris VI (Pierre et Marie Curie) (France), Ann Arbor, Dr., 1972)

    Google Scholar 

  21. J.J. Fripiat, Mi Cruzcump, Annu. Rev. Earth Planet. Sci. 2, 239–256 (1974)

    Article  Google Scholar 

  22. C. Breen, A. Deane, J. Flynn, Clay Miner. 22, 169–178 (1987)

    Article  CAS  Google Scholar 

  23. B. Wang, M. Zhou, Z. Rozynek, J.O. Fossum, J. Mater. Chem. 19, 1816–1828 (2009)

    Article  CAS  Google Scholar 

  24. W. Xie, Z. Gao, W.-P. Pan, D. Hunter, A. Singh, R. Vaia, Chem. Mater. 13, 2979–2990 (2001)

    Article  CAS  Google Scholar 

  25. J. Madejova, H. Palkova, P. Komadel, IR spectroscopy of clay minerals and clay nanocomposites. in Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications, vol. 41 (The Royal Society of Chemistry, 2010), pp. 22–71

    Google Scholar 

  26. J.L. Bishop, C.M. Pieters, J.O. Edwards, Clays Clay Miner. 42, 702–716 (1994)

    Article  CAS  Google Scholar 

  27. F. Bellucci, G. Camino, A. Frache, A. Sarra, Polym. Degrad. Stab. 92, 425–436 (2007)

    Article  CAS  Google Scholar 

  28. H. Zweifel, Stabilization of Polymeric Materials (Springer-Verlag, Berlin Heidelberg, Berlin Heidelberg, 1998)

    Book  Google Scholar 

  29. S.W. Benson, Prog. Energy Combust. Sci. 7, 125–134 (1981)

    Article  CAS  Google Scholar 

  30. S.W. Benson, P.S. Nangia, Acc. Chem. Res. 12, 223–228 (1979)

    Article  CAS  Google Scholar 

  31. R. Song, Y. Fu, B. Li, J. Appl. Polym. Sci. 129, 138–144 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zope, I.S. (2018). Decomposition Behavior of Metal-Ion Exchanged Clays. In: Fire Retardancy Behavior of Polymer/Clay Nanocomposites. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8327-3_4

Download citation

Publish with us

Policies and ethics