Calibration and Parameter Estimation for a Melitz Sector in a CGE Model

  • Peter B. Dixon
  • Michael Jerie
  • Maureen T. Rimmer
Part of the Advances in Applied General Equilibrium Modeling book series (AAGEM)


This chapter is about giving numbers to parameters and unobservable variables in a Melitz CGE model. We start by describing how a Melitz model can be calibrated. This is the process by which unobservable variables (preference and fixed cost variables, δ’s, F’s and H’s) are evaluated so that for given parameter values (inter-variety substitution elasticities and productivity distribution parameters, σ and α) the model reproduces base-year data. We find that for a Melitz model there are multiple legitimate calibration possibilities but that the choice between these does not affect simulation results. Then, we review the method that Balistreri et al. (2011) have pioneered for estimating parameters in a Melitz model. This method combines calibration and estimation. Rather than setting initial values for unobservable variables to reproduce base-year data, Balistreri et al. impose theoretically preferred structures on the unobservable variables. These structures are incompatible with precise calibration, but pave the way for estimation. Parameters can be estimated by choosing the values that allow calibration to base-year data that is as close as possible subject to meeting the preferred structural constraints on the unobservable variables. Balistreri et al.’s approach is likely to be a starting point for many potentially fruitful calibration/estimation efforts.


Calibration Estimation Melitz Armington Balistreri 


  1. Alaouze, C. M. (1976). Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Intermediate Inputs. IMPACT Preliminary Working Paper, No. OP-07, mimeo (pp. 32). Available from the Centre of Policy Studies, Monash University.Google Scholar
  2. Alaouze, C. M. (1977). Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Goods Classified at the Input-Output Level of Aggregation. IMPACT Working Paper, No. O-13 (pp. 32). Available at
  3. Alaouze, C. M., Marsden J. S., & Zeitsch J. (1977). Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Commodities at the Four Digit ASIC Level. IMPACT Working Paper, No. O-11, pp. 66, available at
  4. Balistreri, E., & Rutherford, T. (2013). Computing general equilibrium theories of monopolistic competition and heterogeneous firms (Chap. 23). In P. B. Dixon & D. W. Jorgenson (Eds.), Handbook of Computable General Equilibrium Modeling (pp. 1513–1570). Amsterdam: Elsevier.CrossRefGoogle Scholar
  5. Balistreri, E. J., Hillberry, R. H., & Rutherford, T. F. (2011). Structural estimation and solution of international trade models with heterogeneous firms. Journal of International Economics, 83, 95–108.CrossRefGoogle Scholar
  6. Bernard, A. B., Eaton, J., Jensen, J. N., & Kortum, S. (2003). Plants and productivity in international trade. American Economic Review, 93(4), 1268–1290.CrossRefGoogle Scholar
  7. Blonigen, B., & Wilson, W. (1999). Explaining Armington: What determines substitutability between home and foreign goods. The Canadian Journal of Economics/Revue canadienne d’Economique, 32(1), 1–21.CrossRefGoogle Scholar
  8. Costinot, A., & Rodriguez-Clare, A. (2013). Trade theory with numbers: Quantifying the consequences of globalization. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of International Economics (Vol. 4, pp. 197–261). Amsterdam: Elsevier.Google Scholar
  9. Dimaranan, B. V., McDougall, R. A. (2002). Global trade, assistance, and production: The GTAP 5 Data Base. Center for Global Trade Analysis, Purdue University, March. Available at
  10. Dixon, P. B., Parmenter, B. R., Sutton, J., & Vincent, D. P. (1982). ORANI: A multisectoral model of the Australian economy (pp. xviii–372). Amsterdam: North-Holland.Google Scholar
  11. Dixon, P. B., Parmenter, B. R., Powell, A. A., & Wilcoxen, P. J. (1992). Notes and problems in applied general equilibrium economics (pp. xvi–392). Amsterdam: North-Holland.Google Scholar
  12. Gehlhar, M. (1998). Transport margins. (Chap. 11C). In R. A. McDougall, A. Elbehri & T. P. Truong (Eds.), Global trade assistance and protection: The GTAP 4 Data Base. Center for Global Trade Analysis, Purdue University. Available at
  13. Head, K., & Ries, J. (2001). Increasing returns versus national product differentiation as an explanation for the pattern of U.S.–Canada trade. American Economic Review, 91(4), 858–876.CrossRefGoogle Scholar
  14. Hertel, T., Hummels, D., Ivanic, M., & Keeney, R. (2007). How confident can we be of CGE-based assessments of free trade agreements. Economic Modelling, 24, 611–635.CrossRefGoogle Scholar
  15. McDaniel, C. A., & Balistreri, E. J. (2003). A review of Armington trade substitution elasticities. Economie Internationale, 2(3), 301–313.Google Scholar
  16. Narayanan, B., Aguiar, A. & McDougall R. (Eds.), (2012). Global trade, assistance and production: the GTAP8 Data Base. Center for Global Trade Analysis, Purdue University, .
  17. Shomos, A. (2005), “Armington elasticities for the MONASH and USAGE models”, Research Memorandum, Cat. No. GA-514, Productivity Commission, Melbourne, September.Google Scholar
  18. Zhang, X. G., & Verikios, G. (2003). An alternative estimation of Armington elasticities for the GTAP model. Melbourne: Research Memorandum GT 5 Productivity Commission.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Peter B. Dixon
    • 1
  • Michael Jerie
    • 1
  • Maureen T. Rimmer
    • 2
  1. 1.Centre of Policy StudiesVictoria UniversityMelbourneAustralia
  2. 2.Centre of Policy StudiesVictoria UniversityMelbourneAustralia

Personalised recommendations