Skip to main content

Normality Rule for Plastic Deformation

  • Chapter
  • First Online:
Basics of Continuum Plasticity
  • 1462 Accesses

Abstract

As for plastic deformation, in order to account for the deformation path (or history) dependent on mechanical properties in plasticity, the plastic (natural) strain increment, \(d{\varvec{\upvarepsilon}}^{p} ( {=} {\mathbf{D}}^{p} dt)\), is extensively applied as discussed in Remark #11.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brünig, M., & Obercht, H. (1998). Finite elastic-plastic deformation behaviour of crystalline solids based on a non-associated macroscopic flow rule. International Journal of Plasticity, 14, 1189–1208.

    Google Scholar 

  • Chung, K., & Richmond, O. (1986). A deformation based theory of plasticity based on minimum work paths. Journal of Mechanics and Physics of Solids, 34, 511–523.

    Google Scholar 

  • Dorn, J. E. (1949). Stress-strain relations for anisotropic plastic flow. Journal of Applied Physics, 20, 15.

    Google Scholar 

  • Drucker, D. C., & Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10, 157–165

    Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. In Proceedings of the Royal Society of London (p. 281).

    Google Scholar 

  • Hosford, W. (1972). A generalized isotropic yield criterion. Journal of Applied Mechanics, 39, 607–609.

    Google Scholar 

  • Hosford, F., & Caddell, M. (2014). Metal forming: Mechanics and Metallurgy (4th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, L. R., Smith, K. F., & Lankford, W. T. (1948). Plastic flow of anisotropic metals. Proceedings of the Royal Society of London A, 193, 281.

    Google Scholar 

  • Tresca, H. (1864). Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C.R. Acad. Sci. Paris, 59, 754.

    Google Scholar 

  • Von-Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Gött. Nachr. Math. Phys Klasse, 1, 582–592

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chung, K., Lee, MG. (2018). Normality Rule for Plastic Deformation. In: Basics of Continuum Plasticity. Springer, Singapore. https://doi.org/10.1007/978-981-10-8306-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8306-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8305-1

  • Online ISBN: 978-981-10-8306-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics