Skip to main content

Results and Discussion

  • Chapter
  • First Online:
  • 431 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, the results of the considered performance parameters for fresh as well as engine-aged oil samples have been provided and discussed. In the first stage, average COF profiles and wear volume of piston ring as well as cylinder liner specimen, have been reported and discussed for blank palm TMP ester. It is followed by the investigation of dispersion stability and discussion of tribological parameters for all the nanolubricant samples. After this, the EP behavior of all the lubricant samples has been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agency., E. P. (2002). A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions: US Environmental Protection Agency Washington DC.

    Google Scholar 

  • Amiruddin, H., Abdollah, M., Idris, A., Abdullah, M., & Tamaldin, N. (2015). Stability of nano-oil by pH control in stationary conditions. In Proceedings of Mechanical Engineering Research Day 2015: MERD’15, 2015 (pp. 55–56).

    Google Scholar 

  • Arumugam, S., & Sriram, G. (2014). Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: Its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(11), 1308–1318.

    Article  Google Scholar 

  • Arumugam, S., Sriram, G., & Ellappan, R. (2014). Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy, 72, 618–627.

    Article  Google Scholar 

  • Asfar, K. R., & Hamed, H. (1998). Combustion of fuel blends. Energy Conversion and Management, 39(10), 1081–1093.

    Article  Google Scholar 

  • Chang, L., Zhang, Z., Breidt, C., & Friedrich, K. (2005). Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear, 258(1–4), 141–148.

    Article  Google Scholar 

  • Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., et al. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), e124–e127.

    Article  Google Scholar 

  • Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332.

    Article  Google Scholar 

  • Demas, N. G., Timofeeva, E. V., Routbort, J. L., & Fenske, G. R. (2012). Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribology Letters, 47(1), 91–102.

    Article  Google Scholar 

  • Devlin, C. C., Passut, C., Campbell, R., & Jao, T.-C. (2008). Biodiesel fuel effect on diesel engine lubrication. SAE Technical Paper, 2008-01-2375.

    Google Scholar 

  • Fang, H. L., Whitacre, S. D., Yamaguchi, E. S., & Boons, M. (2007). Biodiesel impact on wear protection of engine oils. SAE Technical Paper, 2007-01-4141.

    Google Scholar 

  • Ingole, S., Charanpahari, A., Kakade, A., Umare, S., Bhatt, D., & Menghani, J. (2013). Tribological behavior of nano TiO2 as an additive in base oil. Wear, 301(1), 776–785.

    Article  Google Scholar 

  • Jiao, D., Zheng, S., Wang, Y., Guan, R., & Cao, B. (2011). The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, 257(13), 5720–5725.

    Article  Google Scholar 

  • Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear, 330–331, 288–308.

    Article  Google Scholar 

  • Labeckas, G., & Slavinskas, S. (2006). The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions. Energy Conversion and Management, 47(13–14), 1954–1967.

    Article  Google Scholar 

  • Lockledge, S. P., & Brownawell, D. W. (2013a). Materials and processes for reducing combustion by-products in a lubrication system for an internal combustion engine. USA: Google Patents, US8607991 B2.

    Google Scholar 

  • Mohsin, R., Majid, Z. A., Shihnan, A. H., Nasri, N. S., & Sharer, Z. (2014). Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Conversion and Management, 88, 821–828.

    Article  Google Scholar 

  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232.

    Article  Google Scholar 

  • Peng, D. X., Chen, C. H., Kang, Y., Chang, Y. P., & Chang, S. Y. (2010a). Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Industrial Lubrication and Tribology, 62(2), 111–120.

    Article  Google Scholar 

  • Peng, D. X., Kang, Y., Chen, S., Shu, F., & Chang, Y. (2010b). Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Industrial Lubrication and Tribology, 62(6), 341–348.

    Article  Google Scholar 

  • Petraru, L., & Novotny-Farkas, F. (2012). Influence of biodiesel fuels on lubricity of passenger car diesel engine oils. goriva i maziva, 51(2), 157–165.

    Google Scholar 

  • Ratoi, M., Castle, R. C., Bovington, C. H., & Spikes, H. A. (2004). The influence of soot and dispersant on ZDDP film thickness and friction. Lubrication Science, 17(1), 25–43.

    Article  Google Scholar 

  • Rudnick, L. R. (2013). Synthetics, mineral oils, and bio-based lubricants: Chemistry and technology. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Sahoo, R. R., & Biswas, S. K. (2014). Effect of layered MoS2 nanoparticles on the frictional behavior and microstructure of lubricating greases. Tribology Letters, 53(1), 157–171.

    Article  Google Scholar 

  • Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. Chichester: Wiley.

    Google Scholar 

  • Stepien, Z., Urzedowska, W., Oleksiak, S., & Czerwinski, J. (2011). Research on emissions and engine lube oil deterioration of diesel engines with BioFuels (RME). SAE International Journal of Fuels and Lubricants, 4(1), 125–138.

    Article  Google Scholar 

  • Sugiyama, G., Maeda, A., & Nagai, K. (2007). Oxidation degradation and acid generation in diesel fuel containing 5% FAME. SAE Technical Paper, 2007-01-2027.

    Google Scholar 

  • Thottackkad, M. V., Perikinalil, R. K., & Kumarapillai, P. N. (2012). Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. International Journal of Precision Engineering and Manufacturing, 13(1), 111–116.

    Article  Google Scholar 

  • Truhan, J. J., Qu, J., & Blau, P. J. (2005a). The effect of lubricating oil condition on the friction and wear of piston ring and cylinder liner materials in a reciprocating bench test. Wear, 259(7), 1048–1055.

    Article  Google Scholar 

  • Truhan, J. J., Qu, J., & Blau, P. J. (2005b). A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribology International, 38(3), 211–218.

    Article  Google Scholar 

  • Waara, P., Norrby, T., & Prakash, B. (2004). Tribochemical wear of rail steels lubricated with synthetic ester-based model lubricants. Tribology Letters, 17(3), 561–568.

    Article  Google Scholar 

  • Wan, Q., Jin, Y., Sun, P., & Ding, Y. (2014). Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. Journal of Nanoparticle Research, 16(5), 1–9.

    Article  Google Scholar 

  • Watson, S. A. (2010). Lubricant-derived ash: In-engine sources and opportunities for reduction. (Ph.D.), Massachusetts Institute of Technology.

    Google Scholar 

  • Watson, S. A., & Wong, V. W. (2008). The effects of fuel dilution with biodiesel on lubricant acidity, oxidation and corrosion—A study with CJ-4 and CI-4 PLUS lubricants. Paper presented at the 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference.

    Google Scholar 

  • Watson, S. A., Wong, V. W., Brownawell, D., & Lockledge, S. P. (2009). Controlling lubricant acidity with an oil conditioning filter. Paper presented at the ASME 2009 Internal Combustion Engine Division Spring Technical Conference.

    Google Scholar 

  • Watson, S. A., Wong, V. W., Brownawell, D., Lockledge, S. P., & Harold, S. (2009). Oil conditioning as a means to minimize lubricant ash requirements and extend oil drain interval. SAE Technical Paper, 2009-01-1782.

    Google Scholar 

  • Windom, B. C., Sawyer, W. G., & Hahn, D. W. (2011). A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribology Letters, 42(3), 301–310.

    Article  Google Scholar 

  • Xie, H., Jiang, B., He, J., Xia, X., & Pan, F. (2015). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 93(A), 63–70.

    Google Scholar 

  • Xu, J., Ji, W., Shen, Z., Li, W., Tang, S., Ye, X., et al. (1999). Raman spectra of CuO nanocrystals. Journal of Raman spectroscopy, 30(5), 413–415.

    Article  Google Scholar 

  • Xu, H., Wang, W., & Zhu, W. (2006). Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. The Journal of Physical Chemistry B, 110(28), 13829–13834.

    Article  Google Scholar 

  • Yadgarov, L., Petrone, V., Rosentsveig, R., Feldman, Y., Tenne, R., & Senatore, A. (2013). Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear, 297(1–2), 1103–1110.

    Article  Google Scholar 

  • Yu, W., & Xie, H. (2012). A review on nanofluids: Preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 1.

    Google Scholar 

  • Yu, H. L., Xu, Y., Shi, P. J., Xu, B. S., Wang, X. L., Liu, Q., et al. (2008). Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives. Surface and Coatings Technology, 203(1–2), 28–34.

    Article  Google Scholar 

  • Zdrodowski, R., Gangopadhyay, A., Anderson, J. E., Ruona, W. C., Uy, D., & Simko, S. J. (2010). Effect of biodiesel (B20) on vehicle-aged engine oil properties. SAE Technical Paper, 2010-01-2103.

    Google Scholar 

  • Zhou, Y.-H., Harmelin, M., & Bigot, J. (1989). Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt%Ni powders. Scripta Metallurgica, 23(8), 1391–1396.

    Article  Google Scholar 

  • Zhu, J., Bi, H., Wang, Y., Wang, X., Yang, X., & Lu, L. (2008). CuO nanocrystals with controllable shapes grown from solution without any surfactants. Materials Chemistry and Physics, 109(1), 34–38.

    Article  Google Scholar 

  • Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Al Mahmud, K. A. H., & Yunus, R. (2014). The effect of temperature on tribological properties of chemically modified bio-based lubricant. Tribology Transactions, 57(3), 408–415.

    Article  Google Scholar 

  • Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Shahabuddin, M., & Yunus, R. (2013). Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy, 54, 167–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubashir Gulzar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gulzar, M. (2018). Results and Discussion. In: Tribological Study of Nanoparticles Enriched Bio-based Lubricants for Piston Ring–Cylinder Interaction. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8294-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8294-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8293-1

  • Online ISBN: 978-981-10-8294-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics