Advertisement

Literature Review

  • Mubashir Gulzar
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

There has been much research and development to improve engine lubricants and drain intervals for IC engines through minimizing frictional losses and wear. The formulation of suitable lubricant is a function of its ability to control friction, wear, and surface damage over the intended life of a system. For actual engine operation, the lubricant should provide effective lubrication performance over the complete drain interval. Therefore, after development of a potential engine lubricating oil, an understanding is required about lubricating oil degradation and its effect on friction and wear of engine components.

References

  1. Abdullah, M. I. H. C., Abdollah, M. F., Amiruddin, H., Tamaldin, N., & Nuri, N. R. M. (2014). Effect of hBN/Al2O3 nanoparticle additives on the tribological performance of engine oil. Jurnal Teknologi, 66(3), 1.Google Scholar
  2. Abdullah, M. I. H. C., Abdollah, M. F. B., Tamaldin, N., Amiruddin, H., Mat Nuri, N. R., Gachot, C., & Kaleli, H. (2016). Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil. Industrial Lubrication and Tribology, 68(4).Google Scholar
  3. Abolle, A., Kouakou, L., & Planche, H. (2009). The viscosity of diesel oil and mixtures with straight vegetable oils: Palm, cabbage palm, cotton, groundnut, copra and sunflower. Biomass and Bioenergy, 33(9), 1116–1121.CrossRefGoogle Scholar
  4. Akbulut, M. (2012). Nanoparticle-based lubrication systems. Journal of Powder Metallurgy & Mining, 2012.Google Scholar
  5. Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., & Moura, E. (2013). Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International, 65, 28–36.CrossRefGoogle Scholar
  6. Amiruddin, H., Abdollah, M., Idris, A., Abdullah, M., & Tamaldin, N. (2015). Stability of nano-oil by pH control in stationary conditions. In Proceedings of Mechanical Engineering Research Day 2015: MERD’15, 2015 (pp. 55–56).Google Scholar
  7. Andersson, P., Tamminen, J., & Sandstrom, C. E. (2002). Piston ring tribology; Literature Survey. 2178 de VTT Tiedotteita.Google Scholar
  8. Arbain, N. H., & Salimon, J. (2011). Synthesis and characterization of ester trimethylolpropane based jatropha curcas oil as biolubricant base stocks. Journal of Science and Technology, 2(2).Google Scholar
  9. Arumugam, S. (2014). Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy, 72, 618–627.CrossRefGoogle Scholar
  10. Arumugam, S., & Sriram, G. (2012a). Effect of bio-lubricant and biodiesel-contaminated lubricant on tribological behavior of cylinder liner–piston ring combination. Tribology Transactions, 55(4), 438–445.CrossRefGoogle Scholar
  11. Arumugam, S., & Sriram, G. (2012b). Synthesis and characterisation of rapeseed oil bio-lubricant–its effect on wear and frictional behaviour of piston ring–cylinder liner combination. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(1), 3–15.CrossRefGoogle Scholar
  12. Arumugam, S., & Sriram, G. (2014). Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: Its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(11), 1308–1318.CrossRefGoogle Scholar
  13. Asrul, M., Zulkifli, N. W. M., Masjuki, H. H., & Kalam, M. A. (2013). Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Engineering, 68, 320–325.CrossRefGoogle Scholar
  14. Avan, E. Y., Spencer, A., Dwyer-Joyce, R. S., Almqvist, A., & Larsson, R. (2013). Experimental and numerical investigations of oil film formation and friction in a piston ring–liner contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(2), 126–140.CrossRefGoogle Scholar
  15. Azman, S. S. N., Zulkifli, N. W. M., Masjuki, H., Gulzar, M., & Zahid, R. (2016). Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. Journal of Materials Research, 31(13), 1932–1938.CrossRefGoogle Scholar
  16. Bakunin, V., Suslov, A. Y., Kuzmina, G., & Parenago, O. (2005). Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubrication Science, 17(2), 127–145.CrossRefGoogle Scholar
  17. Bakunin, V., Suslov, A. Y., Kuzmina, G., Parenago, O., & Topchiev, A. (2004). Synthesis and application of inorganic nanoparticles as lubricant components–A review. Journal of Nanoparticle Research, 6(2), 273–284.CrossRefGoogle Scholar
  18. Barnwal, B., & Sharma, M. (2005). Prospects of biodiesel production from vegetable oils in India. Renewable and Sustainable Energy Reviews, 9(4), 363–378.CrossRefGoogle Scholar
  19. Bartz, W. J. (2000). Synthetic hydraulic fluids for high performance applications. Paper Presented at the Proceedings of the National Conference on Fluid Power.Google Scholar
  20. Basu, S., Sengupta, S., & Ahuja, B. (2005). Fundamentals of Tribology. New Delhi: PHI Learning Pvt. Ltd.Google Scholar
  21. Battersby, N., Pack, S., & Watkinson, R. (1992). A correlation between the biodegradability of oil products in the CEC L-33-T-82 and modified Sturm tests. Chemosphere, 24(12), 1989–2000.CrossRefGoogle Scholar
  22. Battez, H. A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3–4), 256–263.CrossRefGoogle Scholar
  23. Battez, H. A., González, R., Felgueroso, D., Fernández, J. E., del Rocío Fernández, M., García, M. A., et al. (2007). Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear, 263(7–12), 1568–1574.CrossRefGoogle Scholar
  24. Battez, H. A., González, R., Viesca, J. L., Fernández, J. E., Fernández, D. J. M., Machado, A., … Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3), 422–428.Google Scholar
  25. Beitelman, A. (1998). Time for a change? Assessing environmentally acceptable lubricants. Hydro Review, 17, 46–61.Google Scholar
  26. Birova, A., Pavlovičová, A., & Cvenroš, J. (2002). Lubricating oils based on chemically modified vegetable oils. Journal of Synthetic Lubrication, 18(4), 291–299.CrossRefGoogle Scholar
  27. Blau, P. J. (2002). A review of sub-scale test methods to evaluate the friction and wear of ring and liner materials for spark-and compression ignition engines. ORNL Oak Ridge National Laboratory (US).Google Scholar
  28. Brandenberger, S., Mohr, M., Grob, K., & Neukom, H. P. (2005). Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars. Atmospheric Environment, 39(37), 6985–6994.CrossRefGoogle Scholar
  29. Brownawell, D. W., Thaler, W. A., Bannister, E., & Ladwig, P. K. (1990). USA Patent No. US4906389 A.Google Scholar
  30. Bukovnik, S., Dörr, N., Čaika, V., Bartz, W. J., & Loibnegger, B. (2006). Analysis of diverse simulation models for combustion engine journal bearings and the influence of oil condition. Tribology International, 39(8), 820–826.CrossRefGoogle Scholar
  31. Çakir, M., & Akçay, İ. H. (2014). Frictional behavior between piston ring and cylinder liner in engine condition with application of reciprocating test. International Journal of Materials Engineering and Technology, 11(1), 57–71.Google Scholar
  32. Çelik, O. N., Ay, N., & Göncü, Y. (2013). Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Particulate Science and Technology, 31(5), 501–506.CrossRefGoogle Scholar
  33. Chen, S., & Liu, W. (2006). Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties. Materials Chemistry and Physics, 98(1), 183–189.CrossRefGoogle Scholar
  34. Chiñas-Castillo, F., & Spikes, H. (2003). Mechanism of action of colloidal solid dispersions. Journal of Tribology, 125(3), 552–557.CrossRefGoogle Scholar
  35. Cho, Y., Park, J., Ku, B., Lee, J., Park, W.-G., Lee, J., et al. (2012). Synergistic effect of a coating and nano-oil lubricant on the tribological properties of friction surfaces. International Journal of Precision Engineering and Manufacturing, 13(1), 97–102.CrossRefGoogle Scholar
  36. Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., et al. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), e124–e127.CrossRefGoogle Scholar
  37. Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332.CrossRefGoogle Scholar
  38. Daniels, C. C., & Braun, M. J. (2006). The friction behavior of individual components of a spark-ignition engine during warm-up. Tribology Transactions, 49(2), 166–173.CrossRefGoogle Scholar
  39. Das, S. K., Bedar, A., Kannan, A., & Jasuja, K. (2015). Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Scientific Reports, 5, 10522.CrossRefGoogle Scholar
  40. De Silva, P., Priest, M., Lee, P., Coy, R., & Taylor, R. (2011). Tribometer investigation of the frictional response of piston rings when lubricated with the separated phases of lubricant contaminated with the gasoline engine biofuel ethanol and water. Tribology Letters, 43(2), 107–120.CrossRefGoogle Scholar
  41. Demas, N. G., Timofeeva, E. V., Routbort, J. L., & Fenske, G. R. (2012). Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribology Letters, 47(1), 91–102.CrossRefGoogle Scholar
  42. Devlin, C. C., Passut, C., Campbell, R., & Jao, T.-C. (2008). Biodiesel fuel effect on diesel engine lubrication. SAE Technical Paper, 2008-01-2375.Google Scholar
  43. Dwivedi, M., & Sapre, S. (2002). Total vegetable-oil based greases prepared from castor oil. Journal of Synthetic Lubrication, 19(3), 229–241.CrossRefGoogle Scholar
  44. Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart. Annalen der Physik, 17, 549–560.CrossRefGoogle Scholar
  45. Erhan, S., Adhvaryu, A., & Sharma, B. (2006). Chemically functionalized vegetable oils. Chemical Industries-New York-Marcel Dekker-, 111, 361.Google Scholar
  46. Ettefaghi, E., Ahmadi, H., Rashidi, A., & Mohtasebi, S.-S. (2013). Investigation of the anti-wear properties of nano additives on sliding bearings of internal combustion engines. International Journal of Precision Engineering and Manufacturing, 14(5), 805–809.CrossRefGoogle Scholar
  47. Falvo, M. R., & Superfine, R. (2000). Mechanics and friction at the nanometer scale. Journal of Nanoparticle Research, 2(3), 237–248.CrossRefGoogle Scholar
  48. Fan, W. T.-C. (2010). Regeneration of used petroleum-based lubricants and biolubricants by a novel green and sustainable technology. University of Southern California.Google Scholar
  49. Fang, H. L., Whitacre, S. D., Yamaguchi, E. S., & Boons, M. (2007). Biodiesel impact on wear protection of engine oils. SAE Technical Paper, 2007-01-4141.Google Scholar
  50. Fernandez, J. E., Viesca, J. L., & Battez, H. A. (2008). Tribological behaviour of copper oxide nanoparticle suspension. Paper presented at the Lubrication Management and Technology Conference & Exhibition, San Sebastian, Spain.Google Scholar
  51. Fox, N., & Stachowiak, G. (2003). Boundary lubrication properties of oxidized sunflower oil. Tribology & Lubrication Technology, 59(2), 15.Google Scholar
  52. Gao, C., Wang, Y., Hu, D., Pan, Z., & Xiang, L. (2013). Tribological properties of magnetite nanoparticles with various morphologies as lubricating additives. Journal of Nanoparticle Research, 15(3), 1–10.CrossRefGoogle Scholar
  53. Ginzburg, B., Shibaev, L., Kireenko, O., Shepelevskii, A., Baidakova, M., & Sitnikova, A. (2002). Antiwear effect of fullerene C60 additives to lubricating oils. Russian Journal of Applied Chemistry, 75(8), 1330–1335.CrossRefGoogle Scholar
  54. Godfrey, D. (1987). Recognition and solution of some common wear problems related to lubricants and hydraulic fluids. Lubricant Engineering, 43, 111–114.Google Scholar
  55. Greco, A., Mistry, K., Sista, V., Eryilmaz, O., & Erdemir, A. (2011). Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear, 271(9–10), 1754–1760.CrossRefGoogle Scholar
  56. Greenberg, R., Halperin, G., Etsion, I., & Tenne, R. (2004). The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribology Letters, 17(2), 179–186.CrossRefGoogle Scholar
  57. Grushcow, J., & Smith, M. (2005). Next generation feedstocks from new frontiers in oilseed engineering. Paper presented at the World Tribology Congress III.Google Scholar
  58. Gryglewicz, S., Piechocki, W., & Gryglewicz, G. (2003). Preparation of polyol esters based on vegetable and animal fats. Bioresource Technology, 87(1), 35–39.CrossRefGoogle Scholar
  59. Gullac, B., & Akalin, O. (2010). Frictional characteristics of IF-WS2 nanoparticles in simulated engine conditions. Tribology Transactions, 53(6), 939–947.CrossRefGoogle Scholar
  60. Gulzar, M., Masjuki, H. H., Varman, M., Kalam, M. A., Mufti, R. A., Zulkifli, N. W. M., & Zahid, R. (2015). Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribology International, 88(0), 271–279.Google Scholar
  61. Holmberg, K., Andersson, P., & Erdemir, A. (2012). Global energy consumption due to friction in passenger cars. Tribology International, 47, 221–234.CrossRefGoogle Scholar
  62. Honary, L. A. (1996). An investigation of the use of soybean oil in hydraulic systems. Bioresource Technology, 56(1), 41–47.CrossRefGoogle Scholar
  63. Hsu, S. M. (1997). Boundary lubrication: Current understanding. Tribology Letters, 3(1), 1–11.CrossRefGoogle Scholar
  64. Hu, K. H., Huang, F., Hu, X. G., Xu, Y. F., & Zhou, Y. Q. (2011). Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters. Tribology Letters, 43(1), 77–87.CrossRefGoogle Scholar
  65. Hu, Z. S., Lai, R., Lou, F., Wang, L. G., Chen, Z. L., Chen, G. X., et al. (2002). Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear, 252(5–6), 370–374.CrossRefGoogle Scholar
  66. Igartua, A., Fernández, X., Areitioaurtena, O., Luther, R., Seyfert, C., Rausch, J., … Woydt, M. (2009). Biolubricants and triboreactive materials for automotive applications. Tribology International, 42(4), 561–568.Google Scholar
  67. Isaksson, M., Frick, M., Gruvberger, B., Pontén, A., & Bruze, M. (2002). Occupational allergic contact dermatitis from the extreme pressure (EP) additive zinc, bis ((O, O′-di-2-ethylhexyl) dithiophosphate) in neat oils. Contact Dermatitis, 46(4), 248–249.CrossRefGoogle Scholar
  68. Jaiswal, V., Rastogi, R. B., Kumar, R., Singh, L., & Mandal, K. D. (2014). Tribological studies of stearic acid-modified CaCu2.9Zn0.1Ti4O12 nanoparticles as effective zero SAPS antiwear lubricant additives in paraffin oil. Journal of Materials Chemistry A, 2(2), 375–386.Google Scholar
  69. Jatti, V. S., & Singh, T. P. (2015). Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. Journal of Mechanical Science and Technology, 29(2), 793–798.CrossRefGoogle Scholar
  70. Jayadas, N., & Prabhakaran Nair, K. (2007). Tribological evaluation of coconut oil as an environment-friendly lubricant. Tribology International, 40(2), 350–354.CrossRefGoogle Scholar
  71. Jiang, Q., & Wang, S. (1998). Abrasive wear of locomotive diesel engines and contaminant control. Tribology Transactions, 41(4), 605–609.CrossRefGoogle Scholar
  72. Jiao, D., Zheng, S., Wang, Y., Guan, R., & Cao, B. (2011). The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, 257(13), 5720–5725.CrossRefGoogle Scholar
  73. Johansson, S., Nilsson, P. H., Ohlsson, R., & Rosén, B.-G. (2011). Experimental friction evaluation of cylinder liner/piston ring contact. Wear, 271(3), 625–633.CrossRefGoogle Scholar
  74. Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J. M., & Epicier, T. (2008). Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribology Letters, 30(1), 69–80.CrossRefGoogle Scholar
  75. Kalin, M., Kogovšek, J., & Remškar, M. (2012). Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear, 280–281, 36–45.CrossRefGoogle Scholar
  76. Kassfeldt, E., & Dave, G. (1997). Environmentally adapted hydraulic oils. Wear, 207(1), 41–45.CrossRefGoogle Scholar
  77. Kheireddin, B. A. (2013). Tribological properties of nanoparticle-based lubrication systems. College Station: Texas A&M University.Google Scholar
  78. Kodali, D. R. (2002). High performance ester lubricants from natural oils. Industrial Lubrication and Tribology, 54(4), 165–170.CrossRefGoogle Scholar
  79. Kohashi, K.-I., Kimura, Y., Murakami, M., & Drouvin, Y. (2013). Analysis of piston friction in internal combustion engine. SAE International Journal of Fuels and Lubricants, 6(3), 589–593.CrossRefGoogle Scholar
  80. Kolodziejczyk, L., Martinez-Martinez, D., Rojas, T., Fernandez, A., & Sanchez-Lopez, J. (2007). Surface-modified Pd nanoparticles as a superior additive for lubrication. Journal of Nanoparticle Research, 9(4), 639–645.CrossRefGoogle Scholar
  81. Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear, 330–331, 288–308.CrossRefGoogle Scholar
  82. Laad, M., & Jatti, V. K. S. (2016). Titanium oxide nanoparticles as additives in engine oil. Journal of King Saud University-Engineering Sciences.  https://doi.org/10.1016/j.jksues.2016.01.008.Google Scholar
  83. Lee, J., Cho, S., Hwang, Y., Cho, H.-J., Lee, C., Choi, Y., … Kim, D. (2009). Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribology International, 42(3), 440–447.Google Scholar
  84. Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35(2), 127-131.Google Scholar
  85. Lee, C.-G., Hwang, Y.-J., Choi, Y.-M., Lee, J.-K., Choi, C., & Oh, J.-M. (2009). A study on the tribological characteristics of graphite nano lubricants. International Journal of Precision Engineering and Manufacturing, 10(1), 85–90.Google Scholar
  86. Lee, P., Priest, M., Stark, M., Wilkinson, J., Smith, L. J., Taylor, R., & Chung, S. (2006). Extraction and tribological investigation of top piston ring zone oil from a gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220(3), 171–180.Google Scholar
  87. Li, Z., Li, Y., Zhang, Y., Ren, T., & Zhao, Y. (2014). Tribological study of hydrolytically stable S-containing alkyl phenylboric esters as lubricant additives. RSC Advances, 4(48), 25118–25126.CrossRefGoogle Scholar
  88. Li, B., Wang, X., Liu, W., & Xue, Q. (2006). Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives. Tribology Letters, 22(1), 79–84.CrossRefGoogle Scholar
  89. Li, W., Zheng, S., Cao, B., & Ma, S. (2011). Friction and wear properties of ZrO2/SiO2 composite nanoparticles. Journal of Nanoparticle Research, 13(5), 2129–2137.CrossRefGoogle Scholar
  90. Liu, G., Li, X., Lu, N., & Fan, R. (2005). Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles. Tribology Letters, 18(1), 85–90.CrossRefGoogle Scholar
  91. Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 17(4), 961–966.Google Scholar
  92. Lockledge, S. P., & Brownawell, D. W. (2013a). Materials and processes for reducing combustion by-products in a lubrication system for an internal combustion engine. USA: Google Patents, US8607991 B2.Google Scholar
  93. Lockledge, S. P., & Brownawell, D. W. (2013b). Oil filters containing strong base and methods of their use. USA: Google Patents, US20130068694 A1.Google Scholar
  94. Luo, T., Wei, X., Huang, X., Huang, L., & Yang, F. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40(5), 7143–7149.CrossRefGoogle Scholar
  95. Ma, S., Zheng, S., Cao, D., & Guo, H. (2010). Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology, 8(5), 468–472.CrossRefGoogle Scholar
  96. Mang, T., & Dresel, W. (2007). Lubricants and lubrication. New York: Wiley.Google Scholar
  97. Mannekote, J. K., & Kailas, S. V. (2011). Experimental investigation of coconut and palm oils as lubricants in four-stroke engine. Tribology Online, 6(1), 76–82.CrossRefGoogle Scholar
  98. Martin, J. M., & Ohmae, N. (2008). Nanolubricants. New York: Wiley.CrossRefGoogle Scholar
  99. Masjuki, H., & Maleque, M. (1997). Investigation of the anti-wear characteristics of palm oil methyl ester using a four-ball tribometer test. Wear, 206(1), 179–186.CrossRefGoogle Scholar
  100. Masjuki, H., Maleque, M., Kubo, A., & Nonaka, T. (1999). Palm oil and mineral oil based lubricants—Their tribological and emission performance. Tribology International, 32(6), 305–314.CrossRefGoogle Scholar
  101. Meier, M. A., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36(11), 1788–1802.CrossRefGoogle Scholar
  102. Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., & Israelachvili, J. (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 7(7), 527–538.CrossRefGoogle Scholar
  103. Mofijur, M., Masjuki, H., Kalam, M., Hazrat, M., Liaquat, A., Shahabuddin, M., & Varman, M. (2012). Prospects of biodiesel from Jatropha in Malaysia. Renewable and Sustainable Energy Reviews, 16(7), 5007–5020.Google Scholar
  104. Morina, A., Lee, P., Priest, M., & Neville, A. (2011). Challenges of simulating ‘fired engine’ring-liner oil additive/surface interactions in ring-liner bench tribometer. Tribology-Materials, Surfaces & Interfaces, 5(1), 25–33.CrossRefGoogle Scholar
  105. Mukesh, K. D., Jayashree, B., & Ramkumar, S. S. V. (2013). PTFE based nano-lubricants. Wear, 306(1), 80–88.Google Scholar
  106. Nagendramma, P., & Kaul, S. (2012). Development of ecofriendly/biodegradable lubricants: An overview. Renewable and Sustainable Energy Reviews, 16(1), 764–774.CrossRefGoogle Scholar
  107. Nakada, M. (1994). Trends in engine technology and tribology. Tribology International, 27(1), 3–8.MathSciNetCrossRefGoogle Scholar
  108. Nallasamy, P., Saravanakumar, N., Nagendran, S., Suriya, E., & Yashwant, D. (2014). Tribological investigations on MoS2-based nanolubricant for machine tool slideways. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(5), 559–567.CrossRefGoogle Scholar
  109. Nosonovsky, M., & Bhushan, B. (2012). Green tribology. Berlin: Springer.CrossRefGoogle Scholar
  110. Notay, R. B. R. S. (2013). Evolution of lubricant degradation and lubricant behaviour in a piston assembly of a reciprocating gasoline engine. (Ph.D.), University of Leeds.Google Scholar
  111. Ogunniyi, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086–1091.CrossRefGoogle Scholar
  112. Ohmae, N., Martin, J. M., & Mori, S. (2005). Micro and nanotribology. New York: ASME Press.CrossRefGoogle Scholar
  113. Okubo, H., Watanabe, S., Tadokoro, C., & Sasaki, S. (2016). Ultralow friction of a tetrahedral amorphous carbon film lubricated with an environmentally friendly ester-based oil. Tribology Online, 11(2), 102–113.CrossRefGoogle Scholar
  114. Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232.CrossRefGoogle Scholar
  115. Peña-Parás, L., Taha-Tijerina, J., Garza, L., Maldonado-Cortés, D., Michalczewski, R., & Lapray, C. (2015). Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear, 332–333, 1256–1261.CrossRefGoogle Scholar
  116. Peng, D. X., Chen, C. H., Kang, Y., Chang, Y. P., & Chang, S. Y. (2010a). Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Industrial Lubrication and Tribology, 62(2), 111–120.CrossRefGoogle Scholar
  117. Peng, D. X., Kang, Y., Chen, S., Shu, F., & Chang, Y. (2010b). Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Industrial Lubrication and Tribology, 62(6), 341–348.CrossRefGoogle Scholar
  118. Petraru, L., & Novotny-Farkas, F. (2012). Influence of biodiesel fuels on lubricity of passenger car diesel engine oils. goriva i maziva, 51(2), 157–165.Google Scholar
  119. Priest, M., & Taylor, C. (2000). Automobile engine tribology—Approaching the surface. Wear, 241(2), 193–203.CrossRefGoogle Scholar
  120. Quinchia, L., Delgado, M., Franco, J., Spikes, H., & Gallegos, C. (2012). Low-temperature flow behaviour of vegetable oil-based lubricants. Industrial Crops and Products, 37(1), 383–388.CrossRefGoogle Scholar
  121. Rabaso, P. (2014). Nanoparticle-doped lubricants: potential of Inorganic Fullerene-like (IF-) molybdenum disulfide for automotive applications. INSA de Lyon.Google Scholar
  122. Rakopoulos, C., Antonopoulos, K., Rakopoulos, D., Hountalas, D., & Giakoumis, E. (2006). Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Conversion and Management, 47(18), 3272–3287.CrossRefGoogle Scholar
  123. Ran, X., Yu, X., & Zou, Q. (2016). Effect of Particle Concentration on Tribological Properties of ZnO Nanofluids. Tribology Transactions, 1–17.Google Scholar
  124. Randles, S. (1992). Environmentally considerate ester lubricants for the automotive and engineering industries. Journal of Synthetic Lubrication, 9(2), 145–161.CrossRefGoogle Scholar
  125. Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S., & Tenne, R. (1997). Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature, 387(6635), 791–793.CrossRefGoogle Scholar
  126. Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., … Tenne, R. (2003). Tribological properties of WS2 nanoparticles under mixed lubrication. Wear, 255(7–12), 785–793.Google Scholar
  127. Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., & Tenne, R. (2002). Mechanism of friction of fullerenes. Industrial Lubrication and Tribology, 54(4), 171–176.CrossRefGoogle Scholar
  128. Reeves, C. J. (2013). An experimental investigation characterizing the tribological performance of natural and synthetic biolubricants composed of carboxylic acids for energy conservation and sustainability. The University of Wisconsin-Milwaukee.Google Scholar
  129. Reeves, C. J., Menezes, P. L., Jen, T.-C., & Lovell, M. R. (2012). Evaluating the tribological performance of green liquid lubricants and powder additive based green liquid lubricants. Paper presented at the Proceedings of 2012 STLE Annual Meeting & Exhibition, STLE.Google Scholar
  130. Rhee, I.-S., Velez, C., & Von Bernewitz, K. (1995). Evaluation of environmentally acceptable hydraulic fluids. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA293037.
  131. Richardson, D. E. (2000). Review of power cylinder friction for diesel engines. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 122(4), 506–519.CrossRefGoogle Scholar
  132. Rohrbach, R. P., Jones, G. W., Unger, P. D., & Bause, D. E. (2007). USA Patent No. WO2002096534 A1.Google Scholar
  133. Rudnick, L. R. (2013). Synthetics, mineral oils, and bio-based lubricants: Chemistry and technology. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  134. Saidur, R., Kazi, S., Hossain, M., Rahman, M., & Mohammed, H. (2011). A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 15(1), 310–323.CrossRefGoogle Scholar
  135. Salimon, J., Salih, N., & Yousif, E. (2010). Biolubricants: Raw materials, chemical modifications and environmental benefits. European Journal of Lipid Science and Technology, 112(5), 519–530.Google Scholar
  136. Salimon, J., Salih, N., & Yousif, E. (2012a). Improvement of pour point and oxidative stability of synthetic ester basestocks for biolubricant applications. Arabian Journal of Chemistry, 5(2), 193–200.CrossRefGoogle Scholar
  137. Salimon, J., Salih, N., & Yousif, E. (2012b). Triester derivatives of oleic acid: the effect of chemical structure on low temperature, thermo-oxidation and tribological properties. Industrial Crops and Products, 38, 107–114.CrossRefGoogle Scholar
  138. Schiøtz, J., & Jacobsen, K. W. (2003). A maximum in the strength of nanocrystalline copper. Science, 301(5638), 1357–1359.CrossRefGoogle Scholar
  139. Schneider, M. P. (2006). Plant-oil-based lubricants and hydraulic fluids. Journal of the Science of Food and Agriculture, 86(12), 1769–1780.CrossRefGoogle Scholar
  140. Scholz, V., & da Silva, J. N. (2008). Prospects and risks of the use of castor oil as a fuel. Biomass and Bioenergy, 32(2), 95–100.CrossRefGoogle Scholar
  141. Shayler, P., Leong, D., Pegg, I., & Murphy, M. (2009). Investigations of piston ring pack and skirt contributions to motored engine friction. SAE International Journal of Engines, 1(1), 723–734.CrossRefGoogle Scholar
  142. Singh, A. K. (2011). Castor oil-based lubricant reduces smoke emission in two-stroke engines. Industrial Crops and Products, 33(2), 287–295.CrossRefGoogle Scholar
  143. Singh, P. J., Khurma, J., & Singh, A. (2010). Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels. Renewable Energy, 35(9), 2065–2070.CrossRefGoogle Scholar
  144. Singh, R. K., Kukrety, A., Thakre, G. D., Atray, N., & Ray, S. S. (2015). Development of new ecofriendly detergent/dispersant/antioxidant/antiwear additives from l-histidine for biolubricant applications. RSC Advances, 5(47), 37649–37656.CrossRefGoogle Scholar
  145. Smith, O., Priest, M., Taylor, R., Price, R., & Cantley, A. (2005). In-cylinder fuel and lubricant effects on gasoline engine friction. Paper presented at the World Tribology Congress III.Google Scholar
  146. Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310.CrossRefGoogle Scholar
  147. Spikes, H. (2015). Friction modifier additives. Tribology Letters, 60(1), 1–26.MathSciNetCrossRefGoogle Scholar
  148. Su, Y., Gong, L., & Chen, D. (2015). An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. Journal of Nanomaterials, 16(1).Google Scholar
  149. Sugiyama, G., Maeda, A., & Nagai, K. (2007). Oxidation degradation and acid generation in diesel fuel containing 5% FAME. SAE Technical Paper, 2007-01-2027.Google Scholar
  150. Sui, T., Song, B., Zhang, F., & Yang, Q. (2015). Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. Journal of Nanomaterials, 2015, 1–9.CrossRefGoogle Scholar
  151. Sui, T., Song, B., Zhang, F., & Yang, Q. (2016). Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin. RSC Advances, 6(1), 393–402.CrossRefGoogle Scholar
  152. Sunqing, Q., Junxiu, D., & Guoxu, C. (1999). Tribological properties of CeF3 nanoparticles as additives in lubricating oils. Wear, 230(1), 35–38.CrossRefGoogle Scholar
  153. Tao, X., Jiazheng, Z., & Kang, X. (1996). The ball-bearing effect of diamond nanoparticles as an oil additive. Journal of Physics. D: Applied Physics, 29(11), 2932.CrossRefGoogle Scholar
  154. Taylor, R., & Coy, R. (2000). Improved fuel efficiency by lubricant design: A review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 214(1), 1–15.CrossRefGoogle Scholar
  155. Thakur, M. R. N., Srinivas, D. V., & Jain, D. A. K. (2016). Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribology Transactions.  https://doi.org/10.1080/10402004.2016.1142034.Google Scholar
  156. Thottackkad, M. V., Perikinalil, R. K., & Kumarapillai, P. N. (2012). Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. International Journal of Precision Engineering and Manufacturing, 13(1), 111–116.CrossRefGoogle Scholar
  157. Truhan, J. J., Qu, J., & Blau, P. J. (2005a). The effect of lubricating oil condition on the friction and wear of piston ring and cylinder liner materials in a reciprocating bench test. Wear, 259(7), 1048–1055.CrossRefGoogle Scholar
  158. Truhan, J. J., Qu, J., & Blau, P. J. (2005b). A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribology International, 38(3), 211–218.CrossRefGoogle Scholar
  159. Tung, S. C., & McMillan, M. L. (2004). Automotive tribology overview of current advances and challenges for the future. Tribology International, 37(7), 517–536.CrossRefGoogle Scholar
  160. Uosukainen, E., Linko, Y.-Y., Lämsä, M., Tervakangas, T., & Linko, P. (1998). Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. Journal of the American Oil Chemists’ Society, 75(11), 1557–1563.CrossRefGoogle Scholar
  161. USDA Economics, S. a. M. I. S. (2016). United States Department of Agriculture Economics, Statistics and Market Information System ESMIS. Retrieved from https://www.library.cornell.edu/usda-economics-statistics-and-market-information-system.
  162. Usman, A., Cheema, T. A., & Park, C. W. (2015). Tribological performance evaluation and sensitivity analysis of piston ring lubricating film with deformed cylinder liner. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(12), 1455–1468.CrossRefGoogle Scholar
  163. Verma, A., Jiang, W., Abu Safe, H. H., Brown, W. D., & Malshe, A. P. (2008). Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribology Transactions, 51(5), 673–678.CrossRefGoogle Scholar
  164. Viesca, J. L., Battez, A. H., González, R., Chou, R., & Cabello, J. J. (2011). Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribology International, 44(7–8), 829–833.CrossRefGoogle Scholar
  165. Wan, Q., Jin, Y., Sun, P., & Ding, Y. (2014). Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. Journal of Nanoparticle Research, 16(5), 1–9.CrossRefGoogle Scholar
  166. Wang, X.-B., & Liu, W.-M. (2013). Nanoparticle-based lubricant additives. In Encyclopedia of tribology (pp. 2369–2376). Berlin: Springer.Google Scholar
  167. Watson, S. A. (2010). Lubricant-derived ash: in-engine sources and opportunities for reduction. (Ph.D.), Massachusetts Institute of Technology.Google Scholar
  168. Watson, S. A., Wong, V. W., Brownawell, D., & Lockledge, S. P. (2009). Controlling lubricant acidity with an oil conditioning filter. Paper presented at the ASME 2009 Internal Combustion Engine Division Spring Technical Conference.Google Scholar
  169. Watson, S. A., Wong, V. W., Brownawell, D., Lockledge, S. P., & Harold, S. (2009). Oil conditioning as a means to minimize lubricant ash requirements and extend oil drain interval. SAE Technical Paper, 2009-01-1782.Google Scholar
  170. Weertman, J. (1993). Hall-Petch strengthening in nanocrystalline metals. Materials Science and Engineering A, 166(1–2), 161–167.CrossRefGoogle Scholar
  171. Wong, V., Thomas, B., & Watson, S. (2007). Bridging macroscopic lubricant transport and surface tribochemical investigations in reciprocating engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 221(3), 183–193.CrossRefGoogle Scholar
  172. Wu, Y. Y., Tsui, W. C., & Liu, T. C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7–8), 819–825.CrossRefGoogle Scholar
  173. Wu, X., Zhang, X., Yang, S., Chen, H., & Wang, D. (2000). The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemists’ Society, 77(5), 561–563.CrossRefGoogle Scholar
  174. Xiaodong, Z., Xun, F., Huaqiang, S., & Zhengshui, H. (2007). Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubrication Science, 19(1), 71–79.CrossRefGoogle Scholar
  175. Xie, H., Jiang, B., He, J., Xia, X., & Pan, F. (2015). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 93(A), 63–70.Google Scholar
  176. Xu, Y. F., Yu, H. Q., Wei, X. Y., Cui, Z., Hu, X. G., Xue, T., et al. (2013). Friction and wear behaviors of a cylinder liner–piston ring with emulsified bio-oil as fuel. Tribology Transactions, 56(3), 359–365.CrossRefGoogle Scholar
  177. Yadgarov, L., Petrone, V., Rosentsveig, R., Feldman, Y., Tenne, R., & Senatore, A. (2013). Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear, 297(1–2), 1103–1110.CrossRefGoogle Scholar
  178. Ye, W., Cheng, T., Ye, Q., Guo, X., Zhang, Z., & Dang, H. (2003). Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Materials Science and Engineering A, 359(1), 82–85.CrossRefGoogle Scholar
  179. Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 1.Google Scholar
  180. Yu, H.-L., Xu, Y., Shi, P.-J., Xu, B.-S., Wang, X.-L., & Liu, Q. (2008). Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China, 18(3), 636–641.CrossRefGoogle Scholar
  181. Yunus, R., Fakhru’I-Razi, A., Ooi, T., Biak, D., & Iyuke, S. (2004). Kinetics of transesterification of palm-based methyl esters with trimethylolpropane. Journal of the American Oil Chemists’ Society, 81(5), 497–503.CrossRefGoogle Scholar
  182. Yunus, R., Fakhrul I-Razi, A., Ooi, T., Iyuke, S., & Idris, A. (2003). Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Journal of Oil Palm Research, 15(2), 42–49.Google Scholar
  183. Zainal, N., Zulkifli, N., Yusoff, M., Masjuki, H., & Yunus, R. (2015). The feasibility study of CaCO3 derived from cockleshell as nanoparticle in chemically modified lubricant. Paper presented at the Proceedings of Malaysian International Tribology Conference 2015.Google Scholar
  184. Zdrodowski, R., Gangopadhyay, A., Anderson, J. E., Ruona, W. C., Uy, D., & Simko, S. J. (2010). Effect of biodiesel (B20) on vehicle-aged engine oil properties. SAE Technical Paper, 2010-01-2103.Google Scholar
  185. Zhang, Y., Xu, Y., Yang, Y., Zhang, S., Zhang, P., & Zhang, Z. (2015). Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives. Industrial Lubrication and Tribology, 67(3), 227–232.CrossRefGoogle Scholar
  186. Zhao, Y., Zhang, Z., & Dang, H. (2004). Fabrication and tribological properties of Pb nanoparticles. Journal of Nanoparticle Research, 6(1), 47–51.CrossRefGoogle Scholar
  187. Zhou, J., Wu, Z., Zhang, Z., Liu, W., & Xue, Q. (2000). Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribology Letters, 8(4), 213–218.CrossRefGoogle Scholar
  188. Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics, 9(1), 131–139.CrossRefGoogle Scholar
  189. Zin, V., Agresti, F., Barison, S., Colla, L., & Fabrizio, M. (2015). Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil. Journal of Nanoscience and Nanotechnology, 15(5), 3590–3598.CrossRefGoogle Scholar
  190. Zulkifli, N. W. M. (2014). Lubricity and anti-wear characteristic of trimethylolpropane ester derived from edible and non-edible resources. (Ph.D.), University of Malaya, Malaysia. (TJ7 UMP 2014 Nurwmz).Google Scholar
  191. Zulkifli, N. W. M., Azman, S., Kalam, M., Masjuki, H., Yunus, R., & Gulzar, M. (2016). Lubricity of bio-based lubricant derived from different chemically modified fatty acid methyl ester. Tribology International, 93, 555–562.CrossRefGoogle Scholar
  192. Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., & Yunus, R. (2013a). Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Engineering, 68, 152–157.CrossRefGoogle Scholar
  193. Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Shahabuddin, M., & Yunus, R. (2013b). Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy, 54, 167–173.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations