Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 464 Accesses

Abstract

There has been much research and development to improve engine lubricants and drain intervals for IC engines through minimizing frictional losses and wear. The formulation of suitable lubricant is a function of its ability to control friction, wear, and surface damage over the intended life of a system. For actual engine operation, the lubricant should provide effective lubrication performance over the complete drain interval. Therefore, after development of a potential engine lubricating oil, an understanding is required about lubricating oil degradation and its effect on friction and wear of engine components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, M. I. H. C., Abdollah, M. F., Amiruddin, H., Tamaldin, N., & Nuri, N. R. M. (2014). Effect of hBN/Al2O3 nanoparticle additives on the tribological performance of engine oil. Jurnal Teknologi, 66(3), 1.

    Google Scholar 

  • Abdullah, M. I. H. C., Abdollah, M. F. B., Tamaldin, N., Amiruddin, H., Mat Nuri, N. R., Gachot, C., & Kaleli, H. (2016). Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil. Industrial Lubrication and Tribology, 68(4).

    Google Scholar 

  • Abolle, A., Kouakou, L., & Planche, H. (2009). The viscosity of diesel oil and mixtures with straight vegetable oils: Palm, cabbage palm, cotton, groundnut, copra and sunflower. Biomass and Bioenergy, 33(9), 1116–1121.

    Article  Google Scholar 

  • Akbulut, M. (2012). Nanoparticle-based lubrication systems. Journal of Powder Metallurgy & Mining, 2012.

    Google Scholar 

  • Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., & Moura, E. (2013). Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International, 65, 28–36.

    Article  Google Scholar 

  • Amiruddin, H., Abdollah, M., Idris, A., Abdullah, M., & Tamaldin, N. (2015). Stability of nano-oil by pH control in stationary conditions. In Proceedings of Mechanical Engineering Research Day 2015: MERD’15, 2015 (pp. 55–56).

    Google Scholar 

  • Andersson, P., Tamminen, J., & Sandstrom, C. E. (2002). Piston ring tribology; Literature Survey. 2178 de VTT Tiedotteita.

    Google Scholar 

  • Arbain, N. H., & Salimon, J. (2011). Synthesis and characterization of ester trimethylolpropane based jatropha curcas oil as biolubricant base stocks. Journal of Science and Technology, 2(2).

    Google Scholar 

  • Arumugam, S. (2014). Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy, 72, 618–627.

    Article  Google Scholar 

  • Arumugam, S., & Sriram, G. (2012a). Effect of bio-lubricant and biodiesel-contaminated lubricant on tribological behavior of cylinder liner–piston ring combination. Tribology Transactions, 55(4), 438–445.

    Article  Google Scholar 

  • Arumugam, S., & Sriram, G. (2012b). Synthesis and characterisation of rapeseed oil bio-lubricant–its effect on wear and frictional behaviour of piston ring–cylinder liner combination. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(1), 3–15.

    Article  Google Scholar 

  • Arumugam, S., & Sriram, G. (2014). Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: Its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(11), 1308–1318.

    Article  Google Scholar 

  • Asrul, M., Zulkifli, N. W. M., Masjuki, H. H., & Kalam, M. A. (2013). Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Engineering, 68, 320–325.

    Article  Google Scholar 

  • Avan, E. Y., Spencer, A., Dwyer-Joyce, R. S., Almqvist, A., & Larsson, R. (2013). Experimental and numerical investigations of oil film formation and friction in a piston ring–liner contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(2), 126–140.

    Article  Google Scholar 

  • Azman, S. S. N., Zulkifli, N. W. M., Masjuki, H., Gulzar, M., & Zahid, R. (2016). Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. Journal of Materials Research, 31(13), 1932–1938.

    Article  Google Scholar 

  • Bakunin, V., Suslov, A. Y., Kuzmina, G., & Parenago, O. (2005). Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubrication Science, 17(2), 127–145.

    Article  Google Scholar 

  • Bakunin, V., Suslov, A. Y., Kuzmina, G., Parenago, O., & Topchiev, A. (2004). Synthesis and application of inorganic nanoparticles as lubricant components–A review. Journal of Nanoparticle Research, 6(2), 273–284.

    Article  Google Scholar 

  • Barnwal, B., & Sharma, M. (2005). Prospects of biodiesel production from vegetable oils in India. Renewable and Sustainable Energy Reviews, 9(4), 363–378.

    Article  Google Scholar 

  • Bartz, W. J. (2000). Synthetic hydraulic fluids for high performance applications. Paper Presented at the Proceedings of the National Conference on Fluid Power.

    Google Scholar 

  • Basu, S., Sengupta, S., & Ahuja, B. (2005). Fundamentals of Tribology. New Delhi: PHI Learning Pvt. Ltd.

    Google Scholar 

  • Battersby, N., Pack, S., & Watkinson, R. (1992). A correlation between the biodegradability of oil products in the CEC L-33-T-82 and modified Sturm tests. Chemosphere, 24(12), 1989–2000.

    Article  Google Scholar 

  • Battez, H. A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3–4), 256–263.

    Article  Google Scholar 

  • Battez, H. A., González, R., Felgueroso, D., Fernández, J. E., del Rocío Fernández, M., García, M. A., et al. (2007). Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear, 263(7–12), 1568–1574.

    Article  Google Scholar 

  • Battez, H. A., González, R., Viesca, J. L., Fernández, J. E., Fernández, D. J. M., Machado, A., … Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3), 422–428.

    Google Scholar 

  • Beitelman, A. (1998). Time for a change? Assessing environmentally acceptable lubricants. Hydro Review, 17, 46–61.

    Google Scholar 

  • Birova, A., Pavlovičová, A., & Cvenroš, J. (2002). Lubricating oils based on chemically modified vegetable oils. Journal of Synthetic Lubrication, 18(4), 291–299.

    Article  Google Scholar 

  • Blau, P. J. (2002). A review of sub-scale test methods to evaluate the friction and wear of ring and liner materials for spark-and compression ignition engines. ORNL Oak Ridge National Laboratory (US).

    Google Scholar 

  • Brandenberger, S., Mohr, M., Grob, K., & Neukom, H. P. (2005). Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars. Atmospheric Environment, 39(37), 6985–6994.

    Article  Google Scholar 

  • Brownawell, D. W., Thaler, W. A., Bannister, E., & Ladwig, P. K. (1990). USA Patent No. US4906389 A.

    Google Scholar 

  • Bukovnik, S., Dörr, N., Čaika, V., Bartz, W. J., & Loibnegger, B. (2006). Analysis of diverse simulation models for combustion engine journal bearings and the influence of oil condition. Tribology International, 39(8), 820–826.

    Article  Google Scholar 

  • Çakir, M., & Akçay, İ. H. (2014). Frictional behavior between piston ring and cylinder liner in engine condition with application of reciprocating test. International Journal of Materials Engineering and Technology, 11(1), 57–71.

    Google Scholar 

  • Çelik, O. N., Ay, N., & Göncü, Y. (2013). Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Particulate Science and Technology, 31(5), 501–506.

    Article  Google Scholar 

  • Chen, S., & Liu, W. (2006). Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties. Materials Chemistry and Physics, 98(1), 183–189.

    Article  Google Scholar 

  • Chiñas-Castillo, F., & Spikes, H. (2003). Mechanism of action of colloidal solid dispersions. Journal of Tribology, 125(3), 552–557.

    Article  Google Scholar 

  • Cho, Y., Park, J., Ku, B., Lee, J., Park, W.-G., Lee, J., et al. (2012). Synergistic effect of a coating and nano-oil lubricant on the tribological properties of friction surfaces. International Journal of Precision Engineering and Manufacturing, 13(1), 97–102.

    Article  Google Scholar 

  • Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., et al. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), e124–e127.

    Article  Google Scholar 

  • Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332.

    Article  Google Scholar 

  • Daniels, C. C., & Braun, M. J. (2006). The friction behavior of individual components of a spark-ignition engine during warm-up. Tribology Transactions, 49(2), 166–173.

    Article  Google Scholar 

  • Das, S. K., Bedar, A., Kannan, A., & Jasuja, K. (2015). Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Scientific Reports, 5, 10522.

    Article  Google Scholar 

  • De Silva, P., Priest, M., Lee, P., Coy, R., & Taylor, R. (2011). Tribometer investigation of the frictional response of piston rings when lubricated with the separated phases of lubricant contaminated with the gasoline engine biofuel ethanol and water. Tribology Letters, 43(2), 107–120.

    Article  Google Scholar 

  • Demas, N. G., Timofeeva, E. V., Routbort, J. L., & Fenske, G. R. (2012). Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribology Letters, 47(1), 91–102.

    Article  Google Scholar 

  • Devlin, C. C., Passut, C., Campbell, R., & Jao, T.-C. (2008). Biodiesel fuel effect on diesel engine lubrication. SAE Technical Paper, 2008-01-2375.

    Google Scholar 

  • Dwivedi, M., & Sapre, S. (2002). Total vegetable-oil based greases prepared from castor oil. Journal of Synthetic Lubrication, 19(3), 229–241.

    Article  Google Scholar 

  • Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart. Annalen der Physik, 17, 549–560.

    Article  Google Scholar 

  • Erhan, S., Adhvaryu, A., & Sharma, B. (2006). Chemically functionalized vegetable oils. Chemical Industries-New York-Marcel Dekker-, 111, 361.

    Google Scholar 

  • Ettefaghi, E., Ahmadi, H., Rashidi, A., & Mohtasebi, S.-S. (2013). Investigation of the anti-wear properties of nano additives on sliding bearings of internal combustion engines. International Journal of Precision Engineering and Manufacturing, 14(5), 805–809.

    Article  Google Scholar 

  • Falvo, M. R., & Superfine, R. (2000). Mechanics and friction at the nanometer scale. Journal of Nanoparticle Research, 2(3), 237–248.

    Article  Google Scholar 

  • Fan, W. T.-C. (2010). Regeneration of used petroleum-based lubricants and biolubricants by a novel green and sustainable technology. University of Southern California.

    Google Scholar 

  • Fang, H. L., Whitacre, S. D., Yamaguchi, E. S., & Boons, M. (2007). Biodiesel impact on wear protection of engine oils. SAE Technical Paper, 2007-01-4141.

    Google Scholar 

  • Fernandez, J. E., Viesca, J. L., & Battez, H. A. (2008). Tribological behaviour of copper oxide nanoparticle suspension. Paper presented at the Lubrication Management and Technology Conference & Exhibition, San Sebastian, Spain.

    Google Scholar 

  • Fox, N., & Stachowiak, G. (2003). Boundary lubrication properties of oxidized sunflower oil. Tribology & Lubrication Technology, 59(2), 15.

    Google Scholar 

  • Gao, C., Wang, Y., Hu, D., Pan, Z., & Xiang, L. (2013). Tribological properties of magnetite nanoparticles with various morphologies as lubricating additives. Journal of Nanoparticle Research, 15(3), 1–10.

    Article  Google Scholar 

  • Ginzburg, B., Shibaev, L., Kireenko, O., Shepelevskii, A., Baidakova, M., & Sitnikova, A. (2002). Antiwear effect of fullerene C60 additives to lubricating oils. Russian Journal of Applied Chemistry, 75(8), 1330–1335.

    Article  Google Scholar 

  • Godfrey, D. (1987). Recognition and solution of some common wear problems related to lubricants and hydraulic fluids. Lubricant Engineering, 43, 111–114.

    Google Scholar 

  • Greco, A., Mistry, K., Sista, V., Eryilmaz, O., & Erdemir, A. (2011). Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear, 271(9–10), 1754–1760.

    Article  Google Scholar 

  • Greenberg, R., Halperin, G., Etsion, I., & Tenne, R. (2004). The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribology Letters, 17(2), 179–186.

    Article  Google Scholar 

  • Grushcow, J., & Smith, M. (2005). Next generation feedstocks from new frontiers in oilseed engineering. Paper presented at the World Tribology Congress III.

    Google Scholar 

  • Gryglewicz, S., Piechocki, W., & Gryglewicz, G. (2003). Preparation of polyol esters based on vegetable and animal fats. Bioresource Technology, 87(1), 35–39.

    Article  Google Scholar 

  • Gullac, B., & Akalin, O. (2010). Frictional characteristics of IF-WS2 nanoparticles in simulated engine conditions. Tribology Transactions, 53(6), 939–947.

    Article  Google Scholar 

  • Gulzar, M., Masjuki, H. H., Varman, M., Kalam, M. A., Mufti, R. A., Zulkifli, N. W. M., & Zahid, R. (2015). Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribology International, 88(0), 271–279.

    Google Scholar 

  • Holmberg, K., Andersson, P., & Erdemir, A. (2012). Global energy consumption due to friction in passenger cars. Tribology International, 47, 221–234.

    Article  Google Scholar 

  • Honary, L. A. (1996). An investigation of the use of soybean oil in hydraulic systems. Bioresource Technology, 56(1), 41–47.

    Article  Google Scholar 

  • Hsu, S. M. (1997). Boundary lubrication: Current understanding. Tribology Letters, 3(1), 1–11.

    Article  Google Scholar 

  • Hu, K. H., Huang, F., Hu, X. G., Xu, Y. F., & Zhou, Y. Q. (2011). Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters. Tribology Letters, 43(1), 77–87.

    Article  Google Scholar 

  • Hu, Z. S., Lai, R., Lou, F., Wang, L. G., Chen, Z. L., Chen, G. X., et al. (2002). Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear, 252(5–6), 370–374.

    Article  Google Scholar 

  • Igartua, A., Fernández, X., Areitioaurtena, O., Luther, R., Seyfert, C., Rausch, J., … Woydt, M. (2009). Biolubricants and triboreactive materials for automotive applications. Tribology International, 42(4), 561–568.

    Google Scholar 

  • Isaksson, M., Frick, M., Gruvberger, B., Pontén, A., & Bruze, M. (2002). Occupational allergic contact dermatitis from the extreme pressure (EP) additive zinc, bis ((O, O′-di-2-ethylhexyl) dithiophosphate) in neat oils. Contact Dermatitis, 46(4), 248–249.

    Article  Google Scholar 

  • Jaiswal, V., Rastogi, R. B., Kumar, R., Singh, L., & Mandal, K. D. (2014). Tribological studies of stearic acid-modified CaCu2.9Zn0.1Ti4O12 nanoparticles as effective zero SAPS antiwear lubricant additives in paraffin oil. Journal of Materials Chemistry A, 2(2), 375–386.

    Google Scholar 

  • Jatti, V. S., & Singh, T. P. (2015). Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. Journal of Mechanical Science and Technology, 29(2), 793–798.

    Article  Google Scholar 

  • Jayadas, N., & Prabhakaran Nair, K. (2007). Tribological evaluation of coconut oil as an environment-friendly lubricant. Tribology International, 40(2), 350–354.

    Article  Google Scholar 

  • Jiang, Q., & Wang, S. (1998). Abrasive wear of locomotive diesel engines and contaminant control. Tribology Transactions, 41(4), 605–609.

    Article  Google Scholar 

  • Jiao, D., Zheng, S., Wang, Y., Guan, R., & Cao, B. (2011). The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, 257(13), 5720–5725.

    Article  Google Scholar 

  • Johansson, S., Nilsson, P. H., Ohlsson, R., & Rosén, B.-G. (2011). Experimental friction evaluation of cylinder liner/piston ring contact. Wear, 271(3), 625–633.

    Article  Google Scholar 

  • Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J. M., & Epicier, T. (2008). Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribology Letters, 30(1), 69–80.

    Article  Google Scholar 

  • Kalin, M., Kogovšek, J., & Remškar, M. (2012). Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear, 280–281, 36–45.

    Article  Google Scholar 

  • Kassfeldt, E., & Dave, G. (1997). Environmentally adapted hydraulic oils. Wear, 207(1), 41–45.

    Article  Google Scholar 

  • Kheireddin, B. A. (2013). Tribological properties of nanoparticle-based lubrication systems. College Station: Texas A&M University.

    Google Scholar 

  • Kodali, D. R. (2002). High performance ester lubricants from natural oils. Industrial Lubrication and Tribology, 54(4), 165–170.

    Article  Google Scholar 

  • Kohashi, K.-I., Kimura, Y., Murakami, M., & Drouvin, Y. (2013). Analysis of piston friction in internal combustion engine. SAE International Journal of Fuels and Lubricants, 6(3), 589–593.

    Article  Google Scholar 

  • Kolodziejczyk, L., Martinez-Martinez, D., Rojas, T., Fernandez, A., & Sanchez-Lopez, J. (2007). Surface-modified Pd nanoparticles as a superior additive for lubrication. Journal of Nanoparticle Research, 9(4), 639–645.

    Article  Google Scholar 

  • Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear, 330–331, 288–308.

    Article  Google Scholar 

  • Laad, M., & Jatti, V. K. S. (2016). Titanium oxide nanoparticles as additives in engine oil. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2016.01.008.

    Google Scholar 

  • Lee, J., Cho, S., Hwang, Y., Cho, H.-J., Lee, C., Choi, Y., … Kim, D. (2009). Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribology International, 42(3), 440–447.

    Google Scholar 

  • Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35(2), 127-131.

    Google Scholar 

  • Lee, C.-G., Hwang, Y.-J., Choi, Y.-M., Lee, J.-K., Choi, C., & Oh, J.-M. (2009). A study on the tribological characteristics of graphite nano lubricants. International Journal of Precision Engineering and Manufacturing, 10(1), 85–90.

    Google Scholar 

  • Lee, P., Priest, M., Stark, M., Wilkinson, J., Smith, L. J., Taylor, R., & Chung, S. (2006). Extraction and tribological investigation of top piston ring zone oil from a gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220(3), 171–180.

    Google Scholar 

  • Li, Z., Li, Y., Zhang, Y., Ren, T., & Zhao, Y. (2014). Tribological study of hydrolytically stable S-containing alkyl phenylboric esters as lubricant additives. RSC Advances, 4(48), 25118–25126.

    Article  Google Scholar 

  • Li, B., Wang, X., Liu, W., & Xue, Q. (2006). Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives. Tribology Letters, 22(1), 79–84.

    Article  Google Scholar 

  • Li, W., Zheng, S., Cao, B., & Ma, S. (2011). Friction and wear properties of ZrO2/SiO2 composite nanoparticles. Journal of Nanoparticle Research, 13(5), 2129–2137.

    Article  Google Scholar 

  • Liu, G., Li, X., Lu, N., & Fan, R. (2005). Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles. Tribology Letters, 18(1), 85–90.

    Article  Google Scholar 

  • Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 17(4), 961–966.

    Google Scholar 

  • Lockledge, S. P., & Brownawell, D. W. (2013a). Materials and processes for reducing combustion by-products in a lubrication system for an internal combustion engine. USA: Google Patents, US8607991 B2.

    Google Scholar 

  • Lockledge, S. P., & Brownawell, D. W. (2013b). Oil filters containing strong base and methods of their use. USA: Google Patents, US20130068694 A1.

    Google Scholar 

  • Luo, T., Wei, X., Huang, X., Huang, L., & Yang, F. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40(5), 7143–7149.

    Article  Google Scholar 

  • Ma, S., Zheng, S., Cao, D., & Guo, H. (2010). Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology, 8(5), 468–472.

    Article  Google Scholar 

  • Mang, T., & Dresel, W. (2007). Lubricants and lubrication. New York: Wiley.

    Google Scholar 

  • Mannekote, J. K., & Kailas, S. V. (2011). Experimental investigation of coconut and palm oils as lubricants in four-stroke engine. Tribology Online, 6(1), 76–82.

    Article  Google Scholar 

  • Martin, J. M., & Ohmae, N. (2008). Nanolubricants. New York: Wiley.

    Book  Google Scholar 

  • Masjuki, H., & Maleque, M. (1997). Investigation of the anti-wear characteristics of palm oil methyl ester using a four-ball tribometer test. Wear, 206(1), 179–186.

    Article  Google Scholar 

  • Masjuki, H., Maleque, M., Kubo, A., & Nonaka, T. (1999). Palm oil and mineral oil based lubricants—Their tribological and emission performance. Tribology International, 32(6), 305–314.

    Article  Google Scholar 

  • Meier, M. A., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36(11), 1788–1802.

    Article  Google Scholar 

  • Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., & Israelachvili, J. (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 7(7), 527–538.

    Article  Google Scholar 

  • Mofijur, M., Masjuki, H., Kalam, M., Hazrat, M., Liaquat, A., Shahabuddin, M., & Varman, M. (2012). Prospects of biodiesel from Jatropha in Malaysia. Renewable and Sustainable Energy Reviews, 16(7), 5007–5020.

    Google Scholar 

  • Morina, A., Lee, P., Priest, M., & Neville, A. (2011). Challenges of simulating ‘fired engine’ring-liner oil additive/surface interactions in ring-liner bench tribometer. Tribology-Materials, Surfaces & Interfaces, 5(1), 25–33.

    Article  Google Scholar 

  • Mukesh, K. D., Jayashree, B., & Ramkumar, S. S. V. (2013). PTFE based nano-lubricants. Wear, 306(1), 80–88.

    Google Scholar 

  • Nagendramma, P., & Kaul, S. (2012). Development of ecofriendly/biodegradable lubricants: An overview. Renewable and Sustainable Energy Reviews, 16(1), 764–774.

    Article  Google Scholar 

  • Nakada, M. (1994). Trends in engine technology and tribology. Tribology International, 27(1), 3–8.

    Article  MathSciNet  Google Scholar 

  • Nallasamy, P., Saravanakumar, N., Nagendran, S., Suriya, E., & Yashwant, D. (2014). Tribological investigations on MoS2-based nanolubricant for machine tool slideways. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(5), 559–567.

    Article  Google Scholar 

  • Nosonovsky, M., & Bhushan, B. (2012). Green tribology. Berlin: Springer.

    Book  Google Scholar 

  • Notay, R. B. R. S. (2013). Evolution of lubricant degradation and lubricant behaviour in a piston assembly of a reciprocating gasoline engine. (Ph.D.), University of Leeds.

    Google Scholar 

  • Ogunniyi, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086–1091.

    Article  Google Scholar 

  • Ohmae, N., Martin, J. M., & Mori, S. (2005). Micro and nanotribology. New York: ASME Press.

    Book  Google Scholar 

  • Okubo, H., Watanabe, S., Tadokoro, C., & Sasaki, S. (2016). Ultralow friction of a tetrahedral amorphous carbon film lubricated with an environmentally friendly ester-based oil. Tribology Online, 11(2), 102–113.

    Article  Google Scholar 

  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232.

    Article  Google Scholar 

  • Peña-Parás, L., Taha-Tijerina, J., Garza, L., Maldonado-Cortés, D., Michalczewski, R., & Lapray, C. (2015). Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear, 332–333, 1256–1261.

    Article  Google Scholar 

  • Peng, D. X., Chen, C. H., Kang, Y., Chang, Y. P., & Chang, S. Y. (2010a). Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Industrial Lubrication and Tribology, 62(2), 111–120.

    Article  Google Scholar 

  • Peng, D. X., Kang, Y., Chen, S., Shu, F., & Chang, Y. (2010b). Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Industrial Lubrication and Tribology, 62(6), 341–348.

    Article  Google Scholar 

  • Petraru, L., & Novotny-Farkas, F. (2012). Influence of biodiesel fuels on lubricity of passenger car diesel engine oils. goriva i maziva, 51(2), 157–165.

    Google Scholar 

  • Priest, M., & Taylor, C. (2000). Automobile engine tribology—Approaching the surface. Wear, 241(2), 193–203.

    Article  Google Scholar 

  • Quinchia, L., Delgado, M., Franco, J., Spikes, H., & Gallegos, C. (2012). Low-temperature flow behaviour of vegetable oil-based lubricants. Industrial Crops and Products, 37(1), 383–388.

    Article  Google Scholar 

  • Rabaso, P. (2014). Nanoparticle-doped lubricants: potential of Inorganic Fullerene-like (IF-) molybdenum disulfide for automotive applications. INSA de Lyon.

    Google Scholar 

  • Rakopoulos, C., Antonopoulos, K., Rakopoulos, D., Hountalas, D., & Giakoumis, E. (2006). Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Conversion and Management, 47(18), 3272–3287.

    Article  Google Scholar 

  • Ran, X., Yu, X., & Zou, Q. (2016). Effect of Particle Concentration on Tribological Properties of ZnO Nanofluids. Tribology Transactions, 1–17.

    Google Scholar 

  • Randles, S. (1992). Environmentally considerate ester lubricants for the automotive and engineering industries. Journal of Synthetic Lubrication, 9(2), 145–161.

    Article  Google Scholar 

  • Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S., & Tenne, R. (1997). Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature, 387(6635), 791–793.

    Article  Google Scholar 

  • Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., … Tenne, R. (2003). Tribological properties of WS2 nanoparticles under mixed lubrication. Wear, 255(7–12), 785–793.

    Google Scholar 

  • Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., & Tenne, R. (2002). Mechanism of friction of fullerenes. Industrial Lubrication and Tribology, 54(4), 171–176.

    Article  Google Scholar 

  • Reeves, C. J. (2013). An experimental investigation characterizing the tribological performance of natural and synthetic biolubricants composed of carboxylic acids for energy conservation and sustainability. The University of Wisconsin-Milwaukee.

    Google Scholar 

  • Reeves, C. J., Menezes, P. L., Jen, T.-C., & Lovell, M. R. (2012). Evaluating the tribological performance of green liquid lubricants and powder additive based green liquid lubricants. Paper presented at the Proceedings of 2012 STLE Annual Meeting & Exhibition, STLE.

    Google Scholar 

  • Rhee, I.-S., Velez, C., & Von Bernewitz, K. (1995). Evaluation of environmentally acceptable hydraulic fluids. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA293037.

  • Richardson, D. E. (2000). Review of power cylinder friction for diesel engines. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 122(4), 506–519.

    Article  Google Scholar 

  • Rohrbach, R. P., Jones, G. W., Unger, P. D., & Bause, D. E. (2007). USA Patent No. WO2002096534 A1.

    Google Scholar 

  • Rudnick, L. R. (2013). Synthetics, mineral oils, and bio-based lubricants: Chemistry and technology. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Saidur, R., Kazi, S., Hossain, M., Rahman, M., & Mohammed, H. (2011). A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 15(1), 310–323.

    Article  Google Scholar 

  • Salimon, J., Salih, N., & Yousif, E. (2010). Biolubricants: Raw materials, chemical modifications and environmental benefits. European Journal of Lipid Science and Technology, 112(5), 519–530.

    Google Scholar 

  • Salimon, J., Salih, N., & Yousif, E. (2012a). Improvement of pour point and oxidative stability of synthetic ester basestocks for biolubricant applications. Arabian Journal of Chemistry, 5(2), 193–200.

    Article  Google Scholar 

  • Salimon, J., Salih, N., & Yousif, E. (2012b). Triester derivatives of oleic acid: the effect of chemical structure on low temperature, thermo-oxidation and tribological properties. Industrial Crops and Products, 38, 107–114.

    Article  Google Scholar 

  • Schiøtz, J., & Jacobsen, K. W. (2003). A maximum in the strength of nanocrystalline copper. Science, 301(5638), 1357–1359.

    Article  Google Scholar 

  • Schneider, M. P. (2006). Plant-oil-based lubricants and hydraulic fluids. Journal of the Science of Food and Agriculture, 86(12), 1769–1780.

    Article  Google Scholar 

  • Scholz, V., & da Silva, J. N. (2008). Prospects and risks of the use of castor oil as a fuel. Biomass and Bioenergy, 32(2), 95–100.

    Article  Google Scholar 

  • Shayler, P., Leong, D., Pegg, I., & Murphy, M. (2009). Investigations of piston ring pack and skirt contributions to motored engine friction. SAE International Journal of Engines, 1(1), 723–734.

    Article  Google Scholar 

  • Singh, A. K. (2011). Castor oil-based lubricant reduces smoke emission in two-stroke engines. Industrial Crops and Products, 33(2), 287–295.

    Article  Google Scholar 

  • Singh, P. J., Khurma, J., & Singh, A. (2010). Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels. Renewable Energy, 35(9), 2065–2070.

    Article  Google Scholar 

  • Singh, R. K., Kukrety, A., Thakre, G. D., Atray, N., & Ray, S. S. (2015). Development of new ecofriendly detergent/dispersant/antioxidant/antiwear additives from l-histidine for biolubricant applications. RSC Advances, 5(47), 37649–37656.

    Article  Google Scholar 

  • Smith, O., Priest, M., Taylor, R., Price, R., & Cantley, A. (2005). In-cylinder fuel and lubricant effects on gasoline engine friction. Paper presented at the World Tribology Congress III.

    Google Scholar 

  • Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310.

    Article  Google Scholar 

  • Spikes, H. (2015). Friction modifier additives. Tribology Letters, 60(1), 1–26.

    Article  MathSciNet  Google Scholar 

  • Su, Y., Gong, L., & Chen, D. (2015). An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. Journal of Nanomaterials, 16(1).

    Google Scholar 

  • Sugiyama, G., Maeda, A., & Nagai, K. (2007). Oxidation degradation and acid generation in diesel fuel containing 5% FAME. SAE Technical Paper, 2007-01-2027.

    Google Scholar 

  • Sui, T., Song, B., Zhang, F., & Yang, Q. (2015). Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. Journal of Nanomaterials, 2015, 1–9.

    Article  Google Scholar 

  • Sui, T., Song, B., Zhang, F., & Yang, Q. (2016). Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin. RSC Advances, 6(1), 393–402.

    Article  Google Scholar 

  • Sunqing, Q., Junxiu, D., & Guoxu, C. (1999). Tribological properties of CeF3 nanoparticles as additives in lubricating oils. Wear, 230(1), 35–38.

    Article  Google Scholar 

  • Tao, X., Jiazheng, Z., & Kang, X. (1996). The ball-bearing effect of diamond nanoparticles as an oil additive. Journal of Physics. D: Applied Physics, 29(11), 2932.

    Article  Google Scholar 

  • Taylor, R., & Coy, R. (2000). Improved fuel efficiency by lubricant design: A review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 214(1), 1–15.

    Article  Google Scholar 

  • Thakur, M. R. N., Srinivas, D. V., & Jain, D. A. K. (2016). Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribology Transactions. https://doi.org/10.1080/10402004.2016.1142034.

    Google Scholar 

  • Thottackkad, M. V., Perikinalil, R. K., & Kumarapillai, P. N. (2012). Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. International Journal of Precision Engineering and Manufacturing, 13(1), 111–116.

    Article  Google Scholar 

  • Truhan, J. J., Qu, J., & Blau, P. J. (2005a). The effect of lubricating oil condition on the friction and wear of piston ring and cylinder liner materials in a reciprocating bench test. Wear, 259(7), 1048–1055.

    Article  Google Scholar 

  • Truhan, J. J., Qu, J., & Blau, P. J. (2005b). A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribology International, 38(3), 211–218.

    Article  Google Scholar 

  • Tung, S. C., & McMillan, M. L. (2004). Automotive tribology overview of current advances and challenges for the future. Tribology International, 37(7), 517–536.

    Article  Google Scholar 

  • Uosukainen, E., Linko, Y.-Y., Lämsä, M., Tervakangas, T., & Linko, P. (1998). Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. Journal of the American Oil Chemists’ Society, 75(11), 1557–1563.

    Article  Google Scholar 

  • USDA Economics, S. a. M. I. S. (2016). United States Department of Agriculture Economics, Statistics and Market Information System ESMIS. Retrieved from https://www.library.cornell.edu/usda-economics-statistics-and-market-information-system.

  • Usman, A., Cheema, T. A., & Park, C. W. (2015). Tribological performance evaluation and sensitivity analysis of piston ring lubricating film with deformed cylinder liner. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(12), 1455–1468.

    Article  Google Scholar 

  • Verma, A., Jiang, W., Abu Safe, H. H., Brown, W. D., & Malshe, A. P. (2008). Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribology Transactions, 51(5), 673–678.

    Article  Google Scholar 

  • Viesca, J. L., Battez, A. H., González, R., Chou, R., & Cabello, J. J. (2011). Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribology International, 44(7–8), 829–833.

    Article  Google Scholar 

  • Wan, Q., Jin, Y., Sun, P., & Ding, Y. (2014). Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. Journal of Nanoparticle Research, 16(5), 1–9.

    Article  Google Scholar 

  • Wang, X.-B., & Liu, W.-M. (2013). Nanoparticle-based lubricant additives. In Encyclopedia of tribology (pp. 2369–2376). Berlin: Springer.

    Google Scholar 

  • Watson, S. A. (2010). Lubricant-derived ash: in-engine sources and opportunities for reduction. (Ph.D.), Massachusetts Institute of Technology.

    Google Scholar 

  • Watson, S. A., Wong, V. W., Brownawell, D., & Lockledge, S. P. (2009). Controlling lubricant acidity with an oil conditioning filter. Paper presented at the ASME 2009 Internal Combustion Engine Division Spring Technical Conference.

    Google Scholar 

  • Watson, S. A., Wong, V. W., Brownawell, D., Lockledge, S. P., & Harold, S. (2009). Oil conditioning as a means to minimize lubricant ash requirements and extend oil drain interval. SAE Technical Paper, 2009-01-1782.

    Google Scholar 

  • Weertman, J. (1993). Hall-Petch strengthening in nanocrystalline metals. Materials Science and Engineering A, 166(1–2), 161–167.

    Article  Google Scholar 

  • Wong, V., Thomas, B., & Watson, S. (2007). Bridging macroscopic lubricant transport and surface tribochemical investigations in reciprocating engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 221(3), 183–193.

    Article  Google Scholar 

  • Wu, Y. Y., Tsui, W. C., & Liu, T. C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7–8), 819–825.

    Article  Google Scholar 

  • Wu, X., Zhang, X., Yang, S., Chen, H., & Wang, D. (2000). The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemists’ Society, 77(5), 561–563.

    Article  Google Scholar 

  • Xiaodong, Z., Xun, F., Huaqiang, S., & Zhengshui, H. (2007). Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubrication Science, 19(1), 71–79.

    Article  Google Scholar 

  • Xie, H., Jiang, B., He, J., Xia, X., & Pan, F. (2015). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 93(A), 63–70.

    Google Scholar 

  • Xu, Y. F., Yu, H. Q., Wei, X. Y., Cui, Z., Hu, X. G., Xue, T., et al. (2013). Friction and wear behaviors of a cylinder liner–piston ring with emulsified bio-oil as fuel. Tribology Transactions, 56(3), 359–365.

    Article  Google Scholar 

  • Yadgarov, L., Petrone, V., Rosentsveig, R., Feldman, Y., Tenne, R., & Senatore, A. (2013). Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear, 297(1–2), 1103–1110.

    Article  Google Scholar 

  • Ye, W., Cheng, T., Ye, Q., Guo, X., Zhang, Z., & Dang, H. (2003). Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Materials Science and Engineering A, 359(1), 82–85.

    Article  Google Scholar 

  • Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 1.

    Google Scholar 

  • Yu, H.-L., Xu, Y., Shi, P.-J., Xu, B.-S., Wang, X.-L., & Liu, Q. (2008). Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China, 18(3), 636–641.

    Article  Google Scholar 

  • Yunus, R., Fakhru’I-Razi, A., Ooi, T., Biak, D., & Iyuke, S. (2004). Kinetics of transesterification of palm-based methyl esters with trimethylolpropane. Journal of the American Oil Chemists’ Society, 81(5), 497–503.

    Article  Google Scholar 

  • Yunus, R., Fakhrul I-Razi, A., Ooi, T., Iyuke, S., & Idris, A. (2003). Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Journal of Oil Palm Research, 15(2), 42–49.

    Google Scholar 

  • Zainal, N., Zulkifli, N., Yusoff, M., Masjuki, H., & Yunus, R. (2015). The feasibility study of CaCO 3 derived from cockleshell as nanoparticle in chemically modified lubricant. Paper presented at the Proceedings of Malaysian International Tribology Conference 2015.

    Google Scholar 

  • Zdrodowski, R., Gangopadhyay, A., Anderson, J. E., Ruona, W. C., Uy, D., & Simko, S. J. (2010). Effect of biodiesel (B20) on vehicle-aged engine oil properties. SAE Technical Paper, 2010-01-2103.

    Google Scholar 

  • Zhang, Y., Xu, Y., Yang, Y., Zhang, S., Zhang, P., & Zhang, Z. (2015). Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives. Industrial Lubrication and Tribology, 67(3), 227–232.

    Article  Google Scholar 

  • Zhao, Y., Zhang, Z., & Dang, H. (2004). Fabrication and tribological properties of Pb nanoparticles. Journal of Nanoparticle Research, 6(1), 47–51.

    Article  Google Scholar 

  • Zhou, J., Wu, Z., Zhang, Z., Liu, W., & Xue, Q. (2000). Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribology Letters, 8(4), 213–218.

    Article  Google Scholar 

  • Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics, 9(1), 131–139.

    Article  Google Scholar 

  • Zin, V., Agresti, F., Barison, S., Colla, L., & Fabrizio, M. (2015). Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil. Journal of Nanoscience and Nanotechnology, 15(5), 3590–3598.

    Article  Google Scholar 

  • Zulkifli, N. W. M. (2014). Lubricity and anti-wear characteristic of trimethylolpropane ester derived from edible and non-edible resources. (Ph.D.), University of Malaya, Malaysia. (TJ7 UMP 2014 Nurwmz).

    Google Scholar 

  • Zulkifli, N. W. M., Azman, S., Kalam, M., Masjuki, H., Yunus, R., & Gulzar, M. (2016). Lubricity of bio-based lubricant derived from different chemically modified fatty acid methyl ester. Tribology International, 93, 555–562.

    Article  Google Scholar 

  • Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., & Yunus, R. (2013a). Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Engineering, 68, 152–157.

    Article  Google Scholar 

  • Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Shahabuddin, M., & Yunus, R. (2013b). Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy, 54, 167–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubashir Gulzar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gulzar, M. (2018). Literature Review. In: Tribological Study of Nanoparticles Enriched Bio-based Lubricants for Piston Ring–Cylinder Interaction. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8294-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8294-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8293-1

  • Online ISBN: 978-981-10-8294-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics