Advertisement

Research and Development on Artemisia annua in India

  • Ashutosh K. Shukla
  • Ajit K. Shasany
  • Suman P. S. Khanuja
Chapter

Abstract

Artemisia annua (family Asteraceae) is an important medicinal plant. It produces an array of secondary metabolites, but it is mainly known for the antimalarial phytomolecule, artemisinin, which is an endoperoxide sesquiterpene lactone. Artemisinin and artemisinin-based combination therapies (ACTs) are globally used as antimalarials. Presently, the plant remains the only commercial source of artemisinin. After its introduction in India in the early 1980s, A. annua has been subjected to intensive research by Indian scientists. This chapter presents a snapshot of the research carried out on A. annua in Indian laboratories over the years.

Notes

Acknowledgements

The authors duly acknowledge the continued support of CSIR and Department of Biotechnology, Ministry of Science and Technology, Government of India, at various stages for projects and facilities in their work.

References

  1. Aftab T, Khan MM, Naeem M, Idrees M, Siddiqi TO, Moinuddin, Varshney L (2014) Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua. Carbohydr Polym 110:396–404CrossRefGoogle Scholar
  2. Alam P, Abdin MZ (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928CrossRefGoogle Scholar
  3. Alam P, Mohammad A, Ahmad MM, Khan MA, Nadeem M, Khan R, Akmal M, Ahlawat S, Abdin MZ (2014) Efficient method for Agrobacterium mediated transformation of Artemisia annua L. Recent Pat Biotechnol 8:102–107CrossRefGoogle Scholar
  4. Anshul N, Bhakuni RS, Gaur R, Singh D (2013) Isomeric flavonoids of Artemisia annua (Asterales: Asteraceae) as insect growth inhibitors against Helicoverpa armigera (Lepidoptera: Noctuidae). Fla Entomol 96:897–903CrossRefGoogle Scholar
  5. Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A (2016) Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 32:19CrossRefGoogle Scholar
  6. Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing strain Bacillus subtilis Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130CrossRefGoogle Scholar
  7. Bhakuni RS, Jain DC, Sharma RP, Kumar S (2001) Secondary metabolites of Artemisia annua and their biological activity. Curr Sci 80:35–48Google Scholar
  8. Carlen C, Simonnet X (2015) Breeding and germplasm preservation. In: Mathe A (ed) Medicinal and aromatic plants of the world: scientific, production, commercial and utilization aspects, Volume 1 of medicinal and aromatic plants of the world. Springer, Dordrecht, pp 113–130CrossRefGoogle Scholar
  9. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467CrossRefGoogle Scholar
  10. Dondorp AM, Fairhurst RM, Slutsker L, Macarthur JR, Breman JG, Guerin PJ, Wellems TE, Ringwald P, Newman RD, Plowe CV (2011) The threat of artemisinin-resistant malaria. N Engl J Med 365:1073–1075CrossRefGoogle Scholar
  11. Goswami S, Bhakuni RS, Chinniah A, Pal A, Kar SK, Das PK (2012) Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother 56:4594–4607CrossRefGoogle Scholar
  12. Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331CrossRefGoogle Scholar
  13. Gupta MM, Jain DC, Mathur AK, Singh AK, Verma RK, Kumar S (1996) Isolation of a high artemisinic acid containing plant of Artemisia annua. Planta Med 62:280–281CrossRefGoogle Scholar
  14. Gupta SK, Singh P, Bajpai P, Ram G, Singh D, Gupta MM, Jain DC, Khanuja SPS, Kumar S (2002) Morphogenetic variation for artemisinin and volatile oil in Artemisia annua. Ind Crop Prod 16:217–224CrossRefGoogle Scholar
  15. Gupta AK, Gupta MM, Srivastava A, Bansal RP, Lal RK, Shasany AK, Saikia D, Dhawan OP, Tandon S, Mishra R, Maurya P, Zaim M, Kalra A, Srivastava AK, Jhang T, Ujagir R, Verma R, Shanker K, Kumar S, Kumar S (2016) CIM-Sanjeevani: a high artemisinin yielding population of Artemisia (Artemisia annua). J Med Aromat Plant Sci 38:78–83Google Scholar
  16. Hindustan Times (2016) 25 October issue. Lucknow edn. https://www.pressreader.com/india/hindustan-times-lucknow/20161025/281814283405110
  17. Hsu E (2006) Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol 61:666–670CrossRefGoogle Scholar
  18. Islamuddin M, Chouhan G, Farooque A, Dwarakanath BS, Sahal D, Afrin F (2015) Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Negl Trop Dis 9:e3321CrossRefGoogle Scholar
  19. Jain DC, Mathur AK, Gupta MM, Singh AK, Verma RK, Gupta AP, Kumar S (1996) Isolation of high artemisinin-yielding clones of Artemisia annua. Phytochemistry 43:993–1001CrossRefGoogle Scholar
  20. Jain DC, Bhakuni RS, Gupta MM, Sharma RP, Kahol AP, Dutta GP, Kumar S (2000) Domestication of Artemisia annua plant and development of new antimalarial drug arteether in India. J Sci Ind Res 59:1–11Google Scholar
  21. Jindal S, Longchar B, Singh A, Gupta V (2015) Promoters of AaGL2 and AaMIXTA-Like1 genes of Artemisia annua direct reporter gene expression in glandular and non-glandular trichomes. Plant Signal Behav 10(12):e1087629CrossRefGoogle Scholar
  22. Khan S, Ali A, Ahmad S, Abdin MZ (2015) Affordable and rapid HPTLC method for the simultaneous analysis of artemisinin and its metabolite artemisinic acid in Artemisia annua L. Biomed Chromatogr 29:1594–1603CrossRefGoogle Scholar
  23. Khanuja SPS, Paul S, Shasany AK, Gupta AK, Darokar MP, Gupta MM, Verma RK, Ram G, Kumar A, Lal RK, Bansal RP, Singh AK, Bhakuni RS, Tandon S (2005) Genetically tagged improved variety ‘CIM-Arogya’ of Artemisia annua for high artemisinin yield. J Med Aromat Plant Sci 27:520–524Google Scholar
  24. Khanuja SPS, Paul S, Shasany AK, Gupta AK, Darokar MP, Gupta MM, Verma RK, Ram G, Kumar A, Lal RK, Bansal RP, Singh AK, Bhakuni RS, Tandon S (2008) High artemisinin yielding Artemisia plant named ‘CIM-Arogya’. US Patent No. 7,375,260 (20 May 2008)Google Scholar
  25. Khanuja SPS, Paul S, Shasany AK, Darokar MP, Shukla AK, Gupta MM, Kumar A (2009) Primers and a screening method for identification of artemisinin producing plants. US Patent No. 7,473,768 (6 January 2009)Google Scholar
  26. Kiran U, Patra DD (2003) Medicinal and aromatic plant materials as nitrification inhibitors for augmenting yield and nitrogen uptake of Japanese mint (Mentha arvensis L. Var. Piperascens). Bioresour Technol 86:267–276CrossRefGoogle Scholar
  27. Kumar S, Banerjee S, Dwivedi S, Gupta MM, Verma RK, Jain DC, Khanuja SPS, Mathur AK, Bagchi GD, Zehra M, Mehta VK, Naqvi AA, Paul S, Ram G, Ram M, Saikia D, Sangwan RS, Kumar TRS, Shasany AK, Darokar MP, Singh AK, Singh A (1999) Registration of Jeevanraksha and Suraksha varieties of the antimalarial medicinal plant Artemisia annua. J Med Aromat Plant Sci 21:47–48Google Scholar
  28. Kumar S, Gupta SK, Singh P, Bajpai P, Gupta MM, Singh D, Gupta AK, Ram G, Shasany AK, Sharma S (2004) High yields of artemisinin by multi-harvest of Artemisia annua crops. Ind Crop Prod 19:77–90CrossRefGoogle Scholar
  29. Kumar J, Mishra GP, Singh H, Srivastava RB, Naik PK (2011) Congruence of inter simple sequence repeats (ISSR) and random amplification of polymorphic deoxyribonucleic acid (RAPD) markers in genetic characterization of Artemisia annua in the trans-Himalayan region. J Med Plants Res 5:5568–5576Google Scholar
  30. Kumar J, Bajaj P, Singh H, Mishra GP, Srivastava RB, Naik PK (2012) Utilization of intron-flanking EST-specific markers in the genetic characterization of Artemisia annua genotypes from the trans-Himalayan region of Ladakh, India. J Environ Biol 33:991–997PubMedGoogle Scholar
  31. Kumar J, Bajaj P, Mishra GP, Singh SB, Singh H, Naik PK (2014) Utilization of EST-derived SSRs in the genetic characterization of Artemisia annua L. genotypes from Ladakh, India. Indian J Biotechnol 13:464–472Google Scholar
  32. Kumar S, Suresh R, Verma DK, Dangesh A, Tomar VKS (2015) Public private partnership towards rural development: a study of Artemisia annua in Uttar Pradesh. Curr Sci 109:1237–1239CrossRefGoogle Scholar
  33. Kumar R, Vashisth D, Misra A, Akhtar MQ, Jalil SU, Shanker K, Gupta MM, Rout PK, Gupta AK, Shasany AK (2016) RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua. Sci Rep 6:26458CrossRefGoogle Scholar
  34. Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 72:11–20CrossRefGoogle Scholar
  35. Malhotra K, Subramaniyan M, Rawat K, Kalamuddin M, Qureshi MI, Malhotra P, Mohmmed A, Cornish K, Daniell H, Kumar S (2016) Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol Plant 9:1464–1477CrossRefGoogle Scholar
  36. Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Abdin MZ, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357CrossRefGoogle Scholar
  37. Misra A, Chanotiya CS, Gupta MM, Dwivedi UN, Shasany AK (2012) Characterization of cytochrome P450 monooxygenases isolated from trichome enriched fraction of Artemisia annua L. leaf. Gene 510:193–201CrossRefGoogle Scholar
  38. Nair P (2015) Gene prospecting in Artemisia annua using transcriptome-based approaches. Ph.D. thesis, Jawaharlal Nehru University, New Delhi, IndiaGoogle Scholar
  39. Nair P, Misra A, Singh A, Shukla AK, Gupta MM, Gupta AK, Gupta V, Khanuja SPS, Shasany AK (2013) Differentially expressed genes during contrasting growth stages of Artemisia annua for artemisinin content. PLoS One 8(4):e60375.  https://doi.org/10.1371/journal.pone.0060375 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nylang B (2016) The WOW factor in Artemisia annua – a medicinal plant growing in Meghalaya. 31 May 2016 edn. http://explorers.zizira.com/wow-factor-artemisia-annua-medicinal-plant-growing-meghalaya/
  41. Padalia RC, Verma RS, Chauhan A, Chanotiya CS, Yadav A (2011) Variation in the volatile constituents of Artemisia annua var. CIM-Arogya during plant ontogeny. Nat Prod Commun 6:239–242PubMedGoogle Scholar
  42. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367CrossRefGoogle Scholar
  43. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefGoogle Scholar
  44. Pandey N, Pandey-Rai S (2015) Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242:869–879CrossRefGoogle Scholar
  45. Pani A, Mahapatra RK, Behera N, Naik PK (2011) Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. Genomics Proteomics Bioinformatics 9:200–210CrossRefGoogle Scholar
  46. Patra N, Srivastava AK (2015) Use of model-based nutrient feeding for improved production of artemisinin by hairy roots of Artemisia annua in a modified stirred tank bioreactor. Appl Biochem Biotechnol 177:373–388CrossRefGoogle Scholar
  47. Patra N, Srivastava AK (2016) Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors. Plant Cell Rep 35:143–153CrossRefGoogle Scholar
  48. Paul S, Khanuja SPS, Shasany AK, Gupta MM, Darokar MP, Saikia D, Gupta AK (2010) Enhancement of artemisinin content through four cycles of recurrent selection with relation to heritability, correlation and molecular marker in Artemisia annua L. Planta Med 76:1468–1472CrossRefGoogle Scholar
  49. Paul S, Khanuja SPS, Gupta MM (2014) Breeding strategy for genetic improvement up to four generations in relation to artemisinin with canopy and other secondary metabolites in Artemisia annua L. Ind Crop Prod 56:67–73CrossRefGoogle Scholar
  50. Rai R, Pandey S, Shrivastava AK, Pandey-Rai S (2014) Enhanced photosynthesis and carbon metabolism favor arsenic tolerance in Artemisia annua, a medicinal plant as revealed by homology-based proteomics. Int J Proteomic 2014:163962CrossRefGoogle Scholar
  51. Ram M, Gupta MM, Dwivedi S, Kumar S (1997) Effect of plant density on the yields of artemisinin and essential oil in Artemisia annua cropped under low input cost management in North-Central India. Planta Med 63:372–374CrossRefGoogle Scholar
  52. Sangwan RS, Sangwan NS (2001) Molecular markers of putative association with chemotypic characters in medicinal and aromatic plants: progress towards identification of sequence tagged QTLs in Artemisia annua. J Med Aromat Plant Sci 22/4A-23/1A:297–299Google Scholar
  53. Sangwan RS, Sangwan NS, Jain DC, Kumar S, Ranade SA (1999) RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L. Biochem Mol Biol Int 47:935–944PubMedGoogle Scholar
  54. Shasany AK, Shukla AK, Khanuja SPS (2007) Medicinal and aromatic plants. In: Kole C (ed) Genome mapping and molecular breeding in plants, Technical crops, vol 6. Springer, Berlin, pp 175–196Google Scholar
  55. Shukla A, Abad Farooqi AH, Shukla YN, Sharma S (1992) Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regul 11:165–171CrossRefGoogle Scholar
  56. Shukla A, Abad Farooqi AH, Shukla YN (1994) Cytokinins from Artemisia annua L. Plant Physiol Biochem 21:80–83Google Scholar
  57. Simonnet X, Quennoz M, Carlen C (2011) Apollon, a new Artemisia annua variety with high artemisinin content. Planta Med 77:PK2.  https://doi.org/10.1055/s-0031-1282632 CrossRefGoogle Scholar
  58. Singh A, Jindal S, Longchar B, Khan F, Gupta V (2015) Overexpression of Artemisia annua sterol C-4 methyl oxidase gene, AaSMO1, enhances total sterols and improves tolerance to dehydration stress in tobacco. Plant Cell Tissue Org Cult 121:167–181CrossRefGoogle Scholar
  59. Srivastava HK (1999) Genetic diversity and enhancement for antimalarial compound in Artemisia annua. Proc Natl Acad Sci India Sect B 69:13–26Google Scholar
  60. Tripathi AK, Dikshit M (2015) Nobel prize for artemisinin research: Indian side of the story. Curr Sci 109:2172–2173CrossRefGoogle Scholar
  61. Tripathi AK, Prajapati V, Aggarwal KK, Khanuja SPS, Kumar S (2000) Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. J Econ Entomol 93:43–47CrossRefGoogle Scholar
  62. Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterisation of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465CrossRefGoogle Scholar
  63. Xie DY, Ma DM, Judd R, Jones AL (2016) Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochem Rev 15:1093–1114CrossRefGoogle Scholar
  64. Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS (2014) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83CrossRefGoogle Scholar
  65. Yadav RK, Sangwan RS, Srivastava AK, Sangwan NS (2017) Prolonged exposure to salt stress affects specialized metabolites-artemisinin and essential oil accumulation in Artemisia annua L.: metabolic acclimation in preferential favour of enhanced terpenoid accumulation accompanying vegetative to reproductive phase transition. Protoplasma 254:505–522CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ashutosh K. Shukla
    • 1
  • Ajit K. Shasany
    • 1
  • Suman P. S. Khanuja
    • 2
  1. 1.Biotechnology DivisionCSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAPLucknowIndia
  2. 2.Former Director, CIMAP and Chairman, Flora Fauna Science FoundationNew DelhiIndia

Personalised recommendations