Skip to main content

Global Scenario of Solar Photovoltaic (SPV) Materials

  • Conference paper
  • First Online:
Advanced Computational and Communication Paradigms

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 475))

Abstract.

The sun is the most abundant source of renewable energy available on the earth. It provides enough energy in an hour to be used by the world for a whole year. Photovoltaic (PV) technology is one of the finest ways to capitalize the solar energy. Efficiency and overall cost of the modules is the primary concern for the manufacturers as well as costumers. The cost and efficiency mostly depend on the type of the PV material used. This paper reviews various worldwide state-of-the-art solar photovoltaic (SPV) material technologies. It will provide a clear picture of the current scenario of the developed and under developing PV material technologies to the panel manufacturers and industrialists. A brief description of light-absorbing materials used, their efficiencies, and structure of the solar cells based on these materials is provided. More emphasis is given on the manufacturing procedure of each type of conventionally used solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen PK, Awtar K, Bohidar SK (2015) A review of major non-conventional energy sources. IJSTM 4(01):20–25

    Google Scholar 

  2. Tazvinga H, Thopil M, Numbi PB, Adefarati T (2017) Distributed renewable energy technologies. Handbook of distributed generation. Springer International Publishing, pp 3–67

    Chapter  Google Scholar 

  3. Gupta S, Singh R (2011) Investigation of steady state performance of static synchronous compensator on transmission line. ELEKTRIKA J 13(1):42–46

    Google Scholar 

  4. An X et al (2016) Empirical and Quokka simulated evidence for enhanced VOC due to limited junction area for high efficiency silicon solar cells. In: 2016 IEEE 43rd photovoltaic specialists conference (PVSC)

    Google Scholar 

  5. De Azevedo Dias CL, Branco DAC et al (2017) Performance estimation of photovoltaic technologies in Brazil. Renew Energy 114:367–375

    Article  Google Scholar 

  6. Goetzberger A, Knobloch J, Voss B (1998) Crystalline silicon solar cells. Wiley

    Google Scholar 

  7. Green MA et al (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9

    Article  MathSciNet  Google Scholar 

  8. Green MA, Emery K (1993) Solar cell efficiency tables. Prog Photovolt Res Appl 1(1):25–29

    Article  Google Scholar 

  9. Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2(3):96–102

    Article  Google Scholar 

  10. Chu TL, Singh KN (1976) Polycrystalline silicon solar cells on metallurgical silicon substrates. Solid State Electron 19(10):837–838

    Article  Google Scholar 

  11. Van Kerschaver E, Beaucarne G (2006) Back-contact solar cells: a review. Prog Photovolt Res Appl 14(2):107–123

    Article  Google Scholar 

  12. Fabre E, Baudet Y (1978) Polycrystalline silicon solar cells. In: Photovoltaic solar energy conference, pp 178–186

    Chapter  Google Scholar 

  13. Pandey AK et al (2017) Solar photovoltaics (PV): a sustainable solution to solve energy crisis. Green technologies and environmental sustainability. Springer International Publishing, pp 157–178

    Chapter  Google Scholar 

  14. Knechtli RC, Loo RY, Kamath GS (1984) High-efficiency GaAs solar cells. IEEE Trans Electron Devices 31(5):577–588

    Article  Google Scholar 

  15. Khanna V et al (2016) Statistical analysis and engineering fit models for two-diode model parameters of large area silicon solar cells. Sol Energy 136:401–411

    Article  Google Scholar 

  16. Sivananthan S, Carmody M, Bower RW, Mallick S, Garland J (2016) Tunnel homojunctions in group IV/group II-VI multijunction solar cells. U.S. Patent 9,455,364, 27 Sept 2016

    Google Scholar 

  17. Kurtz SR et al (2001) InGaAsN/GaAs heterojunction for multi-junction solar cells. U.S. Patent No. 6,252,287, 26 June 2001

    Google Scholar 

  18. Dezfooli AS et al (2017) Solar pavement: a new emerging technology. Sol Energy 149:272–284

    Article  Google Scholar 

  19. Chopra KL, Das SR (1983) Why thin film solar cells? In: Thin film solar cells. Springer, US, pp 1–18

    Chapter  Google Scholar 

  20. Coutts Timothy J et al (2003) Critical issues in the design of polycrystalline, thin-film tandem solar cells. Prog Photovolt Res Appl 11(6):359–375

    Article  Google Scholar 

  21. Aberle AG (2009) Thin-film solar cells. Thin Solid Films 517(17):4706–4710

    Article  Google Scholar 

  22. Galloni R (1996) Amorphous silicon solar cells. Renew Energy 8(1):400–404

    Article  Google Scholar 

  23. Kołodziej A (2004) Staebler-Wronski effect in amorphous silicon and its alloys. Opto-Electr Rev 12(1):21–32

    Google Scholar 

  24. Watahiki T et al (2016) Analysis of short circuit current loss in rear emitter crystalline Si solar cell. J Appl Phys 119–129

    Google Scholar 

  25. Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77(6):803–814

    Article  Google Scholar 

  26. Wieting RD et al (2011) Single junction CIGS/CIS solar module. U.S. Patent Application No. 13/086,135

    Google Scholar 

  27. Pollock GA, Mitchell KW, Ermer JH (1990) Thin film solar cell and method of making. U.S. Patent No. 4,915,745, 10 Apr 1990

    Google Scholar 

  28. Gwak J et al (2016) Method of fabricating copper indium gallium selenide (CIGS) thin film for solar cell using simplified co-vacuum evaporation and copper indium gallium selenide (CIGS) thin film for solar cell fabricated by the same. U.S. Patent No. 9,472,708, 18 Oct 2016

    Google Scholar 

  29. Lee SW et al (2014) Improved Cu2O‐based solar cells using atomic layer deposition to control the Cu oxidation state at the p‐n junction. Adv Energy Mater 4(11)

    Article  Google Scholar 

  30. Metin B, Nayak D, Pinarbasi M (2011) Cigs based thin film solar cells having shared bypass diodes. U.S. Patent Application 13/163,485, 17 June 2011

    Google Scholar 

  31. Osborne M (2016) ZSW achieves world record CIGS lab cell efficiency of 22.6%. 2016-06-15. http://www.pv-teeh.org/news/zsw-achieves-world-record-cigs-lab-eell-efficiency-of-22.6

  32. Duan C et al (2015) Wide-bandgap Benzodithiophene-Benzothiadiazole copolymers for highly efficient multijunction polymer solar cells. Adv Mater (Wiley Online Library) 27(30):4461–4468

    Article  Google Scholar 

  33. Gupta S, Tripathi RK (2015) Transient stability assessment of two-area power system with LQR based CSC-STATCOM. Automatika 56(1):21–32

    Article  Google Scholar 

  34. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    Article  Google Scholar 

  35. Chen J-D et al (2015) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27(6):1035–1041

    Article  Google Scholar 

  36. Peng J et al (2017) Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci

    Article  Google Scholar 

  37. Bagher AM (2014) Introduction to organic solar cells. Sustain Energy 2(3):85–90

    Google Scholar 

  38. Gupta S, Sharma AK (2010) STATCOM-Its control algorthim. I-Manager’s J Electr Eng 3(4):41–48

    Google Scholar 

  39. Burschka J et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  Google Scholar 

  40. Shin SS et al (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356(6334):167–171

    Article  Google Scholar 

  41. Dimroth F (2017) III–V solar cells–materials, multi‐junction cells–cell design. In: Photovoltaic solar energy: from fundamentals to applications (Book Chapter), pp 373–382

    Chapter  Google Scholar 

  42. Dai P et al (2017) Electron irradiation study of room-temperature wafer-bonded four-junction solar cell grown by MBE. Sol Energy Mater Sol Cells 171:118–122

    Article  Google Scholar 

  43. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4(6):908–918

    Article  Google Scholar 

  44. Gupta S, Tripathi RK (2014) Improved performance of LQR controller in CSC based STATCOM using genetic optimization. In: 6th IEEE power india international conference (PIICON), pp 1–6, Dec 2014

    Google Scholar 

  45. Abou-Ras D, Kirchartz T, Rau U (eds) (2011) Advanced characterization techniques for thin film solar cells. Wiley-VCH, Weinheim, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, S., Sharma, A. (2018). Global Scenario of Solar Photovoltaic (SPV) Materials. In: Bhattacharyya, S., Gandhi, T., Sharma, K., Dutta, P. (eds) Advanced Computational and Communication Paradigms. Lecture Notes in Electrical Engineering, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-10-8240-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8240-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8239-9

  • Online ISBN: 978-981-10-8240-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics