Scalable Image and Video Compression

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter introduces the fundamental concepts employed in (scalable) image and video compression schemes, which are required to understand and appreciate the contributions of this thesis. The main difference between image and video compression is that the latter can exploit both spatial and temporal redundancies in the data, which results in higher compression ratios than in image compression systems.

References

  1. 1.
    R.M. Gray, D.L. Neuhoff, Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998)CrossRefMATHGoogle Scholar
  2. 2.
    D.A. Huffman, A method for the construction of minimum- redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)CrossRefMATHGoogle Scholar
  3. 3.
    I. Witten, R. Neal, J. Cleary, Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)CrossRefGoogle Scholar
  4. 4.
    D. Taubman, M.W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and Practice (Kluwer Academic Publishers, Boston, 2002)CrossRefGoogle Scholar
  5. 5.
    N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. 23, 90–93 (1974)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    M. Vetterli, J. Kovačević, Wavelets and Subband Coding (Prentice Hall, Englewood Cliffs, 1995)MATHGoogle Scholar
  7. 7.
    G. Strang, T. Nguyen, Wavelets and Filter Banks (SIAM, 1996)Google Scholar
  8. 8.
    W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    W. Sweldens, The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    D. Le Gall, A. Tabatabai, Sub-band coding of digital images using symmetric short Kernel filters and arithmetic coding techniques, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (1988), pp. 761–764Google Scholar
  11. 11.
    J.M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Image Proc. 41(12), 3445–3462 (1993)CrossRefMATHGoogle Scholar
  12. 12.
    A. Said, W.A. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. Video Tech. 6(3), 243–250 (1996)CrossRefGoogle Scholar
  13. 13.
    D. Taubman, High performance scalable image compression with EBCOT. IEEE Trans. Image Proc. 9(7), 1158–70 (2000)CrossRefGoogle Scholar
  14. 14.
    T. Wiegand, G.J. Sullivan, G. Bjøntegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Tech. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  15. 15.
    G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Tech. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  16. 16.
    N.S. Jayant, P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice Hall Professional Technical Reference (1990), ISBN: 0132119137Google Scholar
  17. 17.
    H. Schwarz, D. Marpe, T. Wiegand, Analysis of Hierarchical B-Pictures and MCTF (2006), pp. 1929–1932Google Scholar
  18. 18.
    J.R. Jain, A.K. Jain, Displacement measurement and its application in interframe image coding. IEEE Trans. Comm. 29(12), 1799–1808 (1981)CrossRefGoogle Scholar
  19. 19.
    G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding. IEEE Trans. Circ. Syst. Video Tech. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Bjøntegaard, Calculation of average PSNR Differences between RD-curve, VCEG-M33, ITU-T SG16/Q6, Technical Report (2001)Google Scholar
  21. 21.
    T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, G.J. Sullivan, Rate-constrained coder control and comparison of video coding standards. IEEE Trans. Circ. Syst. Video Tech. 13(7), 688–703 (2003)CrossRefGoogle Scholar
  22. 22.
    G.J. Sullivan, T. Wiegand, Rate-distortion optimization for video compression. IEEE Sig. Proc. Mag. 15(6), 74–90 (1998)CrossRefGoogle Scholar
  23. 23.
    M. Chan, Y. Yu, A. Constantinides, Variable size block matching motion compensation with applications to video coding 137(4), 205–212 (1990)Google Scholar
  24. 24.
    R. Mathew, D. Taubman, Quad-tree motion modeling with leaf merging. IEEE Trans. Circ. Syst. Video Tech. 20(10), 1331–1345 (2010)CrossRefGoogle Scholar
  25. 25.
    M.T. Orchard, Predictive motion-field segmentation for image sequence coding. IEEE Trans. Circ. Syst. Video Tech. 3(1), 54–70 (1993)CrossRefGoogle Scholar
  26. 26.
    A. Glantz, A. Krutz, T. Sikora, Adaptive global motion temporal prediction for video coding, in Picture Coding Symposium (2010)Google Scholar
  27. 27.
    M. Tok, V. Eiselein, T. Sikora, Motion modeling for motion vector coding in HEVC, in Picture Coding Symposium (2015)Google Scholar
  28. 28.
    M. Servais, T. Vlachos, T. Davies, Affine motion compensation using a content-based mesh 152(4), 415–423 (2005)Google Scholar
  29. 29.
    H. Schwarz, D. Marpe, T. Wiegand, Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circ. Syst. Video Tech. 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Helle, H. Lakshman, M. Siekmann, J. Stegemann, T. Hinz, H. Schwarz, D. Marpe, T. Wiegand, A scalable video coding extension of HEVC, in Proceedings of the IEEE Data Compression Conference (2013)Google Scholar
  31. 31.
    J. Boyce, Y. Ye, J. Chen, A. Ramasubramonian, Overview of SHVC: scalable extensions of the high efficiency video coding (HEVC) standard, in IEEE Transactions on Circuits and Systems for Video Technology (2015)Google Scholar
  32. 32.
    G. Karlson, M. Vetterli, Three-dimensional subband coding of video, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (1988)Google Scholar
  33. 33.
    D. Taubman, A. Zakhor, Multirate 3-D subband coding of video. IEEE Trans. Image Proc. 3(5), 572–88 (1994)CrossRefGoogle Scholar
  34. 34.
    J.-R. Ohm, Three-dimensional subband coding with motion compensation. IEEE Trans. Image Proc. 3(5), 559–571 (1994)CrossRefGoogle Scholar
  35. 35.
    S.J. Choi, J.W. Woods, Motion-compensated 3-D subband coding of video. IEEE Trans. Image Proc. 8(2), 155–67 (1999)CrossRefGoogle Scholar
  36. 36.
    S.T. Hsiang, J.W. Woods, Invertible three-dimensional analysis/ synthesis system for video coding with half-pixel-accurate motion compensation, in SPIE Conf. on Vis. Commu. and Im. Proc. (1999), pp. 537–546Google Scholar
  37. 37.
    A. Secker, D. Taubman, Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting, in Proceedings of IEEE International Conference on Image Processing (2001), pp. 1029–1032Google Scholar
  38. 38.
    B. Pesquet-Popescu, V. Bottreau, Three-dimensional lifting schemes for motion compensated video compression, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (2001), pp. 1793–1796Google Scholar
  39. 39.
    L. Luo, J. Li, S. Li, Z. Zhuang, Y.-Q. Zhang, Motion compensated lifting wavelet and its application in video coding, in Proceedings of IEEE International Conference on Multimedia and Expo (2001)Google Scholar
  40. 40.
    J.-R. Ohm, M. Schaar, J. Woods, Interframe wavelet coding - motion picture representation for universal scalability. Sig. Proc.: Im. Comm. 19(9), 877–908 (2004)Google Scholar
  41. 41.
    A. Secker, D. Taubman, Highly scalable video compression with scalable motion coding. Proc. IEEE Int. Conf. Image Proc. 13 (2004)Google Scholar
  42. 42.
    A. Golwelkar, J.W. Woods, Scalable video compression using longer motion compensated temporal filters. Vis. Comm. Im. Proc. 5150, 1406–1416 (2003)Google Scholar
  43. 43.
    T. Rusert, J.-R. Ohm, Overcomplete MCTF for improved spatial scalability in 3D wavelet video compression. SPIE Conf. Vis. Comm. Im. Proc. 5960 (2005)Google Scholar
  44. 44.
    Y. Andreopoulos, A. Munteanu, J. Barbarien, M. Van der Schaar, J. Cornelis, P. Schelkens, In-band motion compensated temporal filtering. Sig. Proc: Im. Comm. 19(7), 653–673 (2004)Google Scholar
  45. 45.
    N. Mehrseresht, D. Taubman, An efficient content-adaptive motion-compensated 3-D DWT with enhanced spatial and temporal scalability. IEEE Trans. Image Proc. 15(6), 1397–412 (2006)CrossRefGoogle Scholar
  46. 46.
    A. Gao, N. Canagarajah, D. Bull, Adaptive in-band motion compensated temporal filtering based on motion mismatch detection in the highpass subbands. Int. Symp. Visual Comm. Image Proc. 6077 (2006)Google Scholar
  47. 47.
    N. Adami, A. Signoroni, R. Leonardi, State-of-the-art and trends in scalable video compression with wavelet-based approaches. IEEE Trans. Circ. Syst. Video Tech. 17(9), 1238–1255 (2007)CrossRefGoogle Scholar
  48. 48.
    H.G. Lalgudi, M.W. Marcellin, A. Bilgin, H. Oh, M.S. Nadar, View compensated compression of volume rendered images for remote visualization. IEEE Trans. Image Proc. 18(7), 1501–11 (2009)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    J.-U. Garbas, B. Pesquet-Popescu, A. Kaup, Methods and tools for wavelet-based scalable multiview video coding. IEEE Trans. Circ. Syst. Video Tech. 21(2), 113–126 (2011)CrossRefGoogle Scholar
  50. 50.
    R. Krishnamurthy, J.W. Woods, P. Moulin, Frame interpolation and bidirectional prediction of video using compactly encoded optical-flow fields and label fields. IEEE Trans. Circ. Syst. Video Tech. 9(5), 713–726 (1999)CrossRefGoogle Scholar
  51. 51.
    P. Moulin, R. Krishnamurthy, J.W. Woods, Multiscale modeling and estimation of motion fields for video coding. IEEE Trans. Image Proc. 6(12), 1606–1620 (1997)CrossRefGoogle Scholar
  52. 52.
    G. Ottaviano, P. Kohli, Compressible motion fields, in Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  53. 53.
    A. Zheng, Y. Yuan, H. Zhang, H. Yang, P. Wan, O. Au, Motion vector fields based video coding, in Proceedings IEEE International Conference on Image Processing (2015), pp. 2095–2099Google Scholar
  54. 54.
    K. Müller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, P. Merkle, F.H. Rhee et al., 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans. Image Proc. 22(9), 3366–3378 (2013)Google Scholar
  55. 55.
    S. Young, R. Mathew, D. Taubman, Joint estimation of motion and arc breakpoints for scalable compression, in Proceedings IEEE Global Conference on Signal and Information Processing (2013)Google Scholar
  56. 56.
    S. Young, R. Mathew, D. Taubman, Embedded coding of optical flow fields for scalable video compression, in IEEE International Workshop on Multimedia Signal Processing (2014)Google Scholar
  57. 57.
    R. Mathew, D. Taubman, P. Zanuttigh, Scalable coding of depth maps with R-D optimized embedding. IEEE Trans. Image Proc. 22(5), 1982–95 (2013)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Electrical Engineering and TelecommunicationsUNSW SydneySydneyAustralia

Personalised recommendations