Skip to main content

Bee Diversity and Current Status of Beekeeping in Japan

  • Chapter
  • First Online:
Asian Beekeeping in the 21st Century

Abstract

Beekeeping in Japan is not a large industry; however, because of the role as pollinator, beekeeping is considered to be major agriculture sector. Beekeeping in Japan faces many problems as it does in European and North American counties. In this chapter, we will describe such problems focusing on bee diseases and parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (2006) Defensive behaviour of Apis cerana F. against predatory wasps. J Apic Sci 50(2):39–46

    Google Scholar 

  • Allen MF, Ball BV (1996) The incidence and world distribution of honey bee viruses. Bee World 77:141–162

    Article  Google Scholar 

  • Amdam GV, Hartfelder K, Norberg K et al (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J Econ Entomol 97:741–747

    Article  PubMed  Google Scholar 

  • Anderson DL, Trueman JW (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24(3):165–189

    Article  PubMed  CAS  Google Scholar 

  • Animal Quarantine Service, Ministry of Agriculture, Forestry and Fishery (2015) Annual report of animal quarantine 2015. Animal Quarantine Service, Ministry of Agriculture, Forestry and Fishery, Tokyo. 145pp (In Japanese)

    Google Scholar 

  • Arai R, Tominaga K, Wu M et al (2012) Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLoS One 7:e33708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aronstein KA, Murray KD (2010) Chalkbrood disease in honey bees. J Invertebr Pathol 103:S20–S29. https://doi.org/10.1016/j.jip.2009.06.018

    Article  PubMed  Google Scholar 

  • Aufauvre J, Biron DG, Vidau C et al (2012) Parasite–insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Sci Rep 2(326):1–7. https://doi.org/10.1038/srep00326

    Article  CAS  Google Scholar 

  • Azuma R (1956) About foulbrood of honeybee. J Jpn Vet Med Assoc 9:255–259

    Article  Google Scholar 

  • Bailey L (1967) Nosema apis and dysentery of the honeybee. J Apic Res 6:121–125

    Article  Google Scholar 

  • Bailey L (1969) The multiplication and spread of sacbrood virus of bees. Ann Appl Biol 63:483–491

    Article  PubMed  CAS  Google Scholar 

  • Bailey L, Ball BV (1991) Honey bee pathology, 2nd edn. Academic Press, London. 193pp

    Google Scholar 

  • Bailey L, Fernando EFW (1972) Effects of sacbrood virus on adult honey-bees. Ann Appl Biol 72:27–35

    Article  Google Scholar 

  • Bailey L, Gibbs AJ, Woods RD (1963) Two viruses from adult honeybees (Apis mellifera Linnaeus). Virology 21:390–395

    Article  PubMed  CAS  Google Scholar 

  • Bailey L, Gibbs AJ, Woods RD (1968) The purification and properties of chronic bee-paralysis virus. J Gen Virol 2:251–260

    Article  PubMed  CAS  Google Scholar 

  • Bailey L, Carpenter JM, Woods RD (1982) A strain of sacbrood virus from Apis cerana. J Invertebr Pathol 39:264–265

    Article  Google Scholar 

  • Ball BV (1983) The association of Varroa jacobsoni with virus diseases of honey bees. Exp Appl Acarol 19:607–613

    Google Scholar 

  • Ball BV, Bailey L (1997) Viruses. In: Morse RA, Flottum K (eds) Honeybee pest, predators, & diseases. The A. I. Root Co., Medina, pp 11–31

    Google Scholar 

  • Boecking O, Genersch E (2008) Varroasis—the ongoing crisis in bee keeping. J Consum Protect Food Safety 3(2):221–228

    Article  Google Scholar 

  • Brion ACB (2015) Small hive beetle poses threat to bee industry. In: The Philippine Star. http://www.philstar.com/agriculture/2015/02/22/1426217/small-hive-beetle-poses-threat-bee-industry. Accessed 10 Sept 2017

  • Bureau of Animal Husbandry, Ministry of Agriculture and Forestry (1966) History of livestock development. Chuou-Kouron, Tokyo, 1843 (in Japanese)

    Google Scholar 

  • Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Higgins JA, Feldlaufer MF (2005) Quantitative real-time reverse transcription–PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.) Appl Environ Microbiol 71:436–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YP, Pettis JS, Collins A et al (2006) Prevalence and transmission of honeybee viruses. Appl Environ Microbiol 72:606–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi MB, Martin SJ, Lee JW (2012) Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J Asia Pac Entomol 15:473–477

    Article  Google Scholar 

  • Clarke KE, Rinderer TE, Franck P et al (2002) The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time. Evolution 56(7):1462–1474

    PubMed  CAS  Google Scholar 

  • Cornman RS, Schatz MC, Johnston JS et al (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11:602. https://doi.org/10.1186/1471-2164-11-602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Guzman LI, Rinderer TE, Stelzer JA (1999) Occurrence of two genotypes of Varroa jacobsoni Oud. in North America. Apidologie 30:31–36

    Article  Google Scholar 

  • De Jong D, Morse RA, Eickwort GC (1982a) Mite pests of honey bees. Annu Rev Entomol 27:229–252

    Article  Google Scholar 

  • De Jong D, de Jong PH, Gonçalves LS (1982b) Weight loss and other damage to developing worker honeybees from infestation with V. jacobsoni. J Apic Res 21:165–216

    Article  Google Scholar 

  • de Miranda J, Genersch E (2010) Deformed wing virus. J Invertebr Pathol 103:S48–S61

    Article  PubMed  CAS  Google Scholar 

  • Doublet V, Labarussias M, de Miranda JR et al (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983. https://doi.org/10.1111/1462-2920.12426

    Article  PubMed  CAS  Google Scholar 

  • Ebeling J, Knispel H, Hertlein G et al (2016) Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol 100(17):7387–7395

    Article  PubMed  CAS  Google Scholar 

  • Eischen FA, Cardoso-Tamez D, Wilson WT et al (1989) Honey production of honey bee colonies infested with Acarapis woodi (Rennie). Apidologie 20(1):1–8

    Article  Google Scholar 

  • Ellis JD, Munn PA (2005) The worldwide health status of honey bees. Bee World 86:88–101

    Article  Google Scholar 

  • Ellis JD, Graham JR, Mortensen A (2013) Standard methods for wax moth research. J Apic Res 52(1):1–17

    Article  Google Scholar 

  • Elzen P, Baxter J, Spivak M et al (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31:437–441

    Article  CAS  Google Scholar 

  • Engel MS (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis). J Hymenopt Res 8:165–196

    Google Scholar 

  • Forsgren E (2010) European foulbrood in honey bees. J Invertebr Pathol 103:S5–S9. https://doi.org/10.1016/j.jip.2009.06.016

    Article  PubMed  Google Scholar 

  • Franck P, Garnery L, Loiseau A et al (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86(4):420–430

    Article  CAS  PubMed  Google Scholar 

  • Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79. https://doi.org/10.1016/j.jip.2009.06.017

    Article  PubMed  Google Scholar 

  • Fries I, Feng F, Da Silva A et al (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365

    Article  Google Scholar 

  • Genersch E (2010) American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103:S10–S19

    Article  PubMed  Google Scholar 

  • Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.) Vet Res 41(6):54. https://doi.org/10.1051/vetres/2010027

    Article  PubMed  PubMed Central  Google Scholar 

  • Genersch E, Ashiralieva A, Fries I (2005) Strain-and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol 71:7551–7555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genersch E, Forsgren E, Pentikäinen J et al (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol 56:501–511

    Article  PubMed  CAS  Google Scholar 

  • Gracia-Salinas MJ, Ferrer-Dufol M, Latorre-Castro E et al (2006) Detection of fluvalinate resistance in Varroa destructor in Spanish apiaries. J Apic Res 45(3):101–105

    Article  CAS  Google Scholar 

  • Hasemann L (1961) How long can spores of American foulbrood live? Am Bee J 101:298–299

    Google Scholar 

  • Heath LAF (1982) Development of Chalkbrood in a honey bee colony; Chalkbrood pathogens: a review. Bee World 63(3):119–135

    Article  Google Scholar 

  • Hedtke K, Jensen PM, Jensen AB et al (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 108(3):167–173. https://doi.org/10.1016/j.jip.2011.08.006

    Article  PubMed  Google Scholar 

  • Higes M, Martín R, Meana A et al (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:81–83

    Article  CAS  Google Scholar 

  • Higes M, Martín-Hernandez R, Botias C et al (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669

    Article  PubMed  Google Scholar 

  • Hirai Y, Suzuki T, Inaba N et al (2016) Existence of Paenibacillus larvae genotypes ERIC I-ST2, ERIC I-ST15 and ERIC II-ST10 in the western region of Aichi prefecture, Japan. J Vet Med Sci 78(7):1195–1199. https://doi.org/10.1292/jvms.16-0041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang W, Jiang J, Chen Y et al (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37

    Article  Google Scholar 

  • Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris(L.) (Hymenoptera: Apidae). J Insect Conserv 12:135–146

    Article  Google Scholar 

  • Japan Beekeeping Association (2005) The honeybee plants of Japan. The Japan Beekeeping Association, Tokyo. 333pp. (in Japanese)

    Google Scholar 

  • Japan Beekeeping Association (2011) Damage situation in apiculture by bears. The Bee Journal in Japan Volume 577. The Japan Beekeeping Association, Tokyo. (in Japanese)

    Google Scholar 

  • Kawashima M (2000) Apiten, the preventive drug against American foulbrood. Honeybee Sci 21(2):55–60. (In Japanese; English abstract)

    Google Scholar 

  • Ken T, Hepburn HR, Radloff SE et al (2005) Heat-balling wasps by honeybees. Naturwissenschaften 92:492–495

    Article  PubMed  CAS  Google Scholar 

  • Kimura K (2011) Investigation to determine the cause of honey bee colony loss and prompt measures. Nougyou 1544:25–35. (In Japanese)

    Google Scholar 

  • Kimura K, Yoshiyama M, Saito K et al (2014) Examination of mass honey bee death at the entrance to hives in a paddy rice production district in Japan: the influence of insecticides sprayed on nearby rice fields. J Apic Res 53(5):599–606. https://doi.org/10.3896/IBRA.1.53.5.12

    Article  Google Scholar 

  • Kinoda K, Tamakizawa K, Ito M (2013) The bumblebees of Japan. Hokkaido University Press, Sapporo. 194pp. (In Japanese)

    Google Scholar 

  • Klee J, Besana AM, Genersch E et al (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10

    Article  PubMed  Google Scholar 

  • Kojima Y, Toki T, Morimoto T et al (2011) Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan. Microb Ecol 62(4):895–906. https://doi.org/10.1007/s00248-011-9947-z

    Article  PubMed  Google Scholar 

  • Koulianos S, Crozier RH (1996) Mitochondrial DNA sequence data provides further evidence that the honeybees of Kangaroo Island, Australia are of hybrid origin. Apidologie 27:165–174

    Article  CAS  Google Scholar 

  • Kurihara T (2010) Records of recent bear witnesses in Kyushu Island, Japan. Mamm Sci 50:187–193. (In Japanese; English abstract)

    Google Scholar 

  • Langridge D, McGhee R (1967) Crithidia mellificae: an acidophilic trypanosomatide of honey bee Apis mellifera. J Protozool 14:485–487

    Article  PubMed  CAS  Google Scholar 

  • Maeda T (2015) Infestation of honey bees by tracheal mites, Acarapis woodi, in Japan. J Acarol Soc Jpn 24(1):9–17. (In Japanese; English abstract)

    Article  Google Scholar 

  • Maeda T (2016) Effects of tracheal mite infestation on Japanese honey bee, Apis cerana japonica. J Acarol Soc Jpn 25(S1):109–117.

    Google Scholar 

  • Maeda T, Sakamoto Y (2016) Tracheal mites, Acarapis woodi, greatly increase overwinter mortality in colonies of the Japanese honeybee, Apis cerana japonica. Apidologie 47:762. https://doi.org/10.1007/s13592-016-0434-x

    Article  Google Scholar 

  • Maeta Y (1990) Utilization of wild bees. Farm Japan 24:13–19

    Google Scholar 

  • Maeta Y (1993) Utilization of Osmia cornifrons for apple pollination. In: Inoue T, Kato M (eds) Animals attracted by flowers. Heibonsha, Tokyo, pp 195–232. (in Japanese)

    Google Scholar 

  • Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J Appl Ecol 38:1082–1093

    Article  Google Scholar 

  • Martin SJ, Hogarth A, van Breda J et al (1998) A scientific note on Varroa jacobsoni Oudemans and the collapse of Apis mellifera colonies in the United Kingdom. Apidologie 29:369–370

    Article  Google Scholar 

  • Martín-Hernández R, Botías C, Bailón EG et al (2012) Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ Microbiol 14:2127–2138

    Article  PubMed  Google Scholar 

  • Matsumura C, Yokoyama J, Washitani I (2004) Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in southern Hokkaido, Japan. Glob Environ Res 8:51–66

    Google Scholar 

  • Matsuura M (1988) Ecological studies on vespine wasps (Hymenoptera: Vespidae) attacking honeybee colonies. Appl Entomol Zool 23:428–440

    Article  Google Scholar 

  • Matsuura M, Yamane S (1984) Ethology of Vespinae. Hokkaido University Press, Sapporo. 428pp. (in Japanese)

    Google Scholar 

  • Matsuura M, Yamane S (1990) Biology of the Vespine wasps. Springer, Berlin. 323pp

    Book  Google Scholar 

  • McMullan JB, Brown MJF (2009) A qualitative model of mortality in honeybee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi). Exp Appl Acarol 47(3):225–234

    Article  PubMed  Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries MAFF (2016a) Situation over beekeeping (in Japanese). http://www.maff.go.jp/j/chikusan/kikaku/lin/sonota/attach/pdf/bee-3.pdf

  • Ministry of Agriculture, Forestry and Fisheries MAFF (2016b) System for ensuring the stability of honey bees for pollination (in Japanese). http://www.maff.go.jp/j/chikusan/gijutu/mitubati/attach/pdf/index-3.pdf

  • Ministry of Agriculture, Forestry and Fisheries MAFF (2017a) The outbreak situation of the monitoring epidemic (in Japanese). http://www.maff.go.jp/j/syouan/douei/kansi_densen/kansi_densen.html

  • Ministry of Agriculture, Forestry and Fisheries MAFF (2017b) Influence of chemicals on honey bees (in Japanese). http://www.maff.go.jp/j/nouyaku/n_mitubati/honeybee.html

  • Ministry of Environment ME and Ministry of Agriculture, Forestry and Fisheries MAFF (2017) Usage policy of alternative species of alien bumblebee (in Japanese). http://www.maff.go.jp/j/press/seisan/kaki/attach/pdf/170421_11-1.pdf

  • Morimoto T, Kojima Y, Yoshiyama M et al (2012) Molecular identification of chronic bee paralysis virus infection in Apis mellifera colonies in Japan. Virus 4(7):1093–1103

    Article  CAS  Google Scholar 

  • Morimoto T, Kojima Y, Yoshiyama M et al (2013) Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. Environ Microbiol Rep 5:74–77. https://doi.org/10.1111/j.1758-2229.2012.00385.x

    Article  PubMed  CAS  Google Scholar 

  • Morrissey BJ, Helgason T, Poppinga L et al (2015) Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol 17:1414–1424

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Ellis JD (2008) The small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae): distribution, biology and control of an invasive species. J Apic Res 47(3):181–183

    Google Scholar 

  • Neumann P, Pettis JS, Schäfer MO (2016) Quo vadis Aethina tumida? Biology and control of small hive beetles. Apidologie 47:427–466

    Article  Google Scholar 

  • Office International des Épizooties, OIE (2008) Manual of standards for diagnostic test and vaccines for terrestrial animals. Chapter 2.2.1. Acarapisosis of honeybees. OIE—World Organisation for Animal Health. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.02.01_ACARAPISOSIS.pdf

  • Oldroyd BP, Cornuet JM, Rowe D et al (1995) Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe. Heredity 74:315–325. https://doi.org/10.1038/hdy.1995.46

    Article  Google Scholar 

  • Ono M, Igarashi T, Ohno E et al (1995) Unusual thermal defence by a honeybee against mass attack by hornets. Nature 377:334–336

    Article  CAS  Google Scholar 

  • Paxton RJ, Klee J, Korpela S et al (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565

    Article  Google Scholar 

  • Pettis JS, Wilson WT (1996) Life history of the honey bee tracheal mite (Acari: Tarsonemidae). Ann Entomol Soc Am 89(3):368–374

    Article  Google Scholar 

  • Rana BS, Garg ID, Khurana SM et al (1986) Thai sacbrood virus of honeybees (Apis cerana indica F) in northwest Himalayas. Indian J Virol 2:127–131

    Google Scholar 

  • Rauch S, Ashiralieva A, Hedtke K et al (2009) Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Appl Environ Microbiol 75:3344–3347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravoet J, Maharramov J, Meeus I et al (2013) Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE 8(8):e72443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravoet J, Schwarz RS, Descamps T et al (2015) Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol 130:21–27. https://doi.org/10.1016/j.jip.2015.06.007

    Article  PubMed  Google Scholar 

  • Rennie J (1921) Isle of Wight disease in hive bees—acarine disease: the organism associated with the disease—Tarsonemus woodi, nsp. Earth and Environ Science Trans Royal Soc Edinburgh 52(4):768–779

    Article  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  PubMed  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Heidelberg. 284pp

    Book  Google Scholar 

  • Sakai Y, Takahashi J (2014) Discovery of a worker of Vespa velutina (Hymenoptera: Vespidae) from Tsushima Island, Japan. Kontyu (new series) 17:32–36. (in Japanese)

    Google Scholar 

  • Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45:519–548

    Article  PubMed  CAS  Google Scholar 

  • Sammataro D, Untalan P, Guerrero F et al (2005) The resistance of Varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int J Acarol 31:67–74

    Article  Google Scholar 

  • Sasaki M (1999) Wonders of the Japanese honey bee. Kaiyusha, Tokyo. 191pp (in Japanese; English abstract)

    Google Scholar 

  • Sasaki M (2013) Bee’s eye view of flowering plants—nectar and pollen source plants and related honeybee products. Kaiyusha, Tokyo. 413pp. (in Japanese; English abstract)

    Google Scholar 

  • Schwarz RS, Bauchan G, Murphy C et al (2015) Characterization of two species of Trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, 1967 and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol 62:567–583

    Article  PubMed  Google Scholar 

  • Sugahara M, Sakamoto F (2009) Heat and carbon dioxide generated by honeybees jointly act to kill hornets. Naturwissenschaften 96:1133–1136

    Article  PubMed  CAS  Google Scholar 

  • Takahashi J, Yoshida T (2003) The origin of Japanese honey bee Apis cerana japonica inferred from mitochondrial DNA. Honeybee Sci 24(2):71–76. (in Japanese; English abstract)

    CAS  Google Scholar 

  • Takahashi J, Yoshida T, Takagi T et al (2007) Geographic variation in the Japanese islands of Apis cerana japonica and in A. cerana populations bordering its geographic range. Apidologie 38:335–340

    Article  CAS  Google Scholar 

  • Takahashi J, Takeuchi M, Matsumoto M et al (2014) Genetic structure of apicultural honeybee Apis Mellifera in Japan. Bull Res Inst Adv Technol Kyoto Sangyo Univ 13:25–37. (in Japanese; English abstract)

    Google Scholar 

  • Takamatsu D, Morinishi K, Arai R et al (2014) Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Vet Microbiol 171(1–2):221–226. https://doi.org/10.1016/j.vetmic.2014.03.036

    Article  PubMed  CAS  Google Scholar 

  • Tentcheva D, Gauthier L, Zappulla N et al (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70:7185–7191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson HM, Brown MA, Ball RF et al (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33(4):357–366

    Article  CAS  Google Scholar 

  • Tsuruga H, Mano T, Yamanaka M et al (1994) Estimate of genetic variations in Hokkaido brown bears (Ursus arctos yesoensis) by DNA fingerprinting. Jpn J Vet Res 42(3–4):127–136

    PubMed  CAS  Google Scholar 

  • Uemura T, Sakashita N, Morinishi, K et al (2013) Cases of occurrence of European foulbrood (in Japanese). http://www.pref.kagawa.lg.jp/chikusan/eisei/H25/25-6.pdf

  • Verma LR, Rana BS, Verma S (1990) Observations on Apis cerana colonies surviving from Thai sacbrood virus infestation. Apidologie 21:169–174

    Article  Google Scholar 

  • Vidau C, Diogon M, Aufauvre J et al (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. https://doi.org/10.1371/journal.pone.00215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang DL, Moeller FE (1970) Comparison of the free amino acid composition in the haemolymph of healthy and Nosema-infected female honey bees. J Invertebr Pathol 15:202–206

    Article  CAS  Google Scholar 

  • White G (1913) Sacbrood, a disease of bees. US Dept Agr Bur Entomol Circ 169:1–5

    Google Scholar 

  • Wilfert L, Long G, Leggett HC et al (2016) Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351(6273):594–597

    Article  PubMed  CAS  Google Scholar 

  • Yamada M (1986) Control techniques of acarid mites on Osmia cornifrons [Hymenoptera: Megachilidae] pollinating apple. Agric Hortic 61(3):425–429. (in Japanese)

    Google Scholar 

  • Yamashita T, Tanaka S (2010) Colony collapse of Japanese honeybee in Yamaguchi prefecture. Honeybee Sci 28(2):73–80. (in Japanese; English abstract)

    Google Scholar 

  • Yang X, Cox-Foster D (2007) Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134:405–412

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Peng G, Li T et al (2013) Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecol Evol 3:298–311. https://doi.org/10.1002/ece3.464

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida T (2000) Methods of rearing and ecology of Japanese honey bee. Tamagawa University Press, Machida, Tokyo. 135pp (in Japanese)

    Google Scholar 

  • Yue C, Genersch E (2005) RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J Gen Virol 86:3419–3424

    Article  PubMed  CAS  Google Scholar 

  • Yue C, Schroder M, Gisder S et al (2007) Vertical-transmission routes of deformed wing virus of honeybees (Apis mellifera). J Gen Virol 88:2329–2336

    Article  PubMed  CAS  Google Scholar 

  • Yue D, Nordhoff M, Wieler LH et al (2008) Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ Microbiol 10:1612–1620

    Article  PubMed  CAS  Google Scholar 

  • Zaghloul OA, Mourad AK, El Kady MB et al (2005) Assessment of losses in honey yield due to the chalkbrood disease, with reference to the determination of its economic injury levels in Egypt. Commun Agric Appl Biol Sci 70(4):703–714

    PubMed  CAS  Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries MAFF (2011) The outbreak situation of the monitoring epidemic (in Japanese). http://www.maff.go.jp/j/syouan/douei/kansi_densen/kansi_densen.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Yoshiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshiyama, M., Kimura, K. (2018). Bee Diversity and Current Status of Beekeeping in Japan. In: Chantawannakul, P., Williams, G., Neumann, P. (eds) Asian Beekeeping in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-10-8222-1_10

Download citation

Publish with us

Policies and ethics