Skip to main content

Functional Nucleic Acid Based Biosensors for Post-transition Metal Ion Detection

  • Chapter
  • First Online:
Functional Nucleic Acid Based Biosensors for Food Safety Detection
  • 696 Accesses

Abstract

In the periodic table, some metal ions located after the transition metals are called post-transition metals, including lead, thallium, indium, gallium, tin, and bismuth. Although most of the post-transition metals have strong toxicity, but the research about their interactions with DNA are less reported except for lead. At the same time, lead is more potentially harmful because it is widely presence in water, food, paints, dust, and leaded gasoline, which are common in human activity. Therefore, in this part, we chose the lead as example and introduced current progress of functional nucleic acids (FNAs) based lead biosensor, including colorimetric biosensors, fluorescent biosensors, quantum dot biosensor, electrochemical biosensors and graphene oxide-based biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Pan, O.C. Uhlenbeck, A small metalloribozyme with a two-step mechanism. Nature 358(6387), 560–563 (1992)

    Article  CAS  PubMed  Google Scholar 

  2. T. Lan, K. Furuya, Y. Lu, A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 46(22), 3896–3898 (2010)

    Article  CAS  Google Scholar 

  3. J. Li, W. Zheng, A.H. Kwon, Y. Lu, In vitro selection and characterization of a highly efficient Zn (II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28(2), 481–488 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H.W. Lee, D. F. Chinnapen, D. Sen, Structure-function investigation of a deoxyribozyme with dual chelatase and peroxidase activities. Pure Appl. Chem. 76(7-8), 1537–1545 (2004)

    Article  CAS  Google Scholar 

  5. N.C. Papanikolaou, E.G. Hatzidaki, S. Belivanis, G.N. Tzanakakis, A.M. Tsatsakis, Lead toxicity update. A brief review. Med. Sci. Monit. 11(10), RA329–RA336 (2005)

    PubMed  CAS  Google Scholar 

  6. G.W. Goldstein, Developmental neurobiology of lead toxicity. Human lead exposure, 125–135 (1992)

    Google Scholar 

  7. L. Patrick, Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern. Med. Rev. 11(1), 2–23 (2006)

    PubMed  Google Scholar 

  8. W.R. Farkas, Depolymerization of ribonucleic acid by plumbous ion. Biochimica et Biophysica Acta (BBA)-nucleic acids and protein. Synthesis 155(2), 401–409 (1968)

    CAS  Google Scholar 

  9. T. Pan, O.C. Uhlenbeck, In vitro selection of RNAs that undergo autolytic cleavage with lead (II). Biochemistry 31(16), 3887–3895 (1992)

    Article  CAS  PubMed  Google Scholar 

  10. R.R. Breaker, G.F. Joyce, A DNA enzyme that cleaves RNA. Chem. Biol. 1(4), 223–229 (1994)

    Article  CAS  PubMed  Google Scholar 

  11. A.K. Brown, J. Li, C.M.B. Pavot, Y. Lu, A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42(23), 7152–7161 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. J. Li, Y. Lu, A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122(42), 10466–10467 (2000)

    Article  CAS  Google Scholar 

  13. P.J.J. Huang, J. Liu, Sensing parts-per-trillion Cd2+, Hg2+, and Pb2+ collectively and individually using phosphorothioate dnazymes. Anal. Chem. 86(12), 5999–6005 (2014)

    Google Scholar 

  14. X.H. Zhao, R.M. Kong, X.B. Zhang, H.M. Meng, W.N. Liu, W. Tan, G.L. Shen, R.Q. Yu, Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal. Chem. 83(13), 5062–5066 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. R. Saran, Q. Chen, J. Liu, Searching for a DNAzyme version of the Leadzyme. Mol. Evol. 81(5–6), 235–244 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Li, R. Geyer, D. Sen, Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35(21), 6911–6922 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. P. Travascio, Y. Li, D. Sen, DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 5(9), 505–517 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. T. Li, E. Wang, S. Dong, Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 82(4), 1515–1520 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, Y. Tang, A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye. Talanta 136, 210–214 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. T. Li, S. Dong, E. Wang, A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. Am. Chem. Soc. 132(38), 13156–13157 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. S. Zhan, Y. Wu, L. Liu, H. Xing, L. He, X. Zhan, Y. Luo, P. Zhou, A simple fluorescent assay for lead (II) detection based on lead (II)-stabilized G-quadruplex formation. RSC Adv. 3(38), 16962–16966 (2013)

    Article  CAS  Google Scholar 

  22. C.L. Li, K.T. Liu, Y.W. Lin, H.T. Chang, Fluorescence detection of lead (II) ions through their induced catalytic activity of DNAzymes. Anal. Chem. 83(1), 225–230 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Wang, J. Wang, F. Yang, X. Yang, Spectrophotometric detection of lead (II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim. Acta 171(1–2), 195–201 (2010)

    Article  CAS  Google Scholar 

  24. Y. Li, Y. Lu, Functional nucleic for analytical applications. (Springer New York, 2009)

    Google Scholar 

  25. J. Liu, Y. Lu, A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125(22), 6642–6643 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. J. Liu, Y. Lu, Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126(39), 12298–12305 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Y.W. Lin, C.C. Huang, H.T. Chang, Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136(5), 863–871 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Wang, L. Ma, Gold nanoparticle probes. Coord. Chem. Rev. 253(11), 1607–1618 (2009)

    Article  CAS  Google Scholar 

  29. Y.W. Lin, C.W. Liu, H.T. Chang, DNA functionalized gold nanoparticles for bioanalysis. Anal. Methods 1(1), 14–24 (2009)

    Article  CAS  Google Scholar 

  30. K.W. Huang, C.J. Yu, W.L. Tseng, Sensitivity enhancement in the colorimetric detection of lead (II) ion using gallic acid–capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens. Bioelectron. 25(5), 984–989 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. R. Gunupuru, D. Maity, G.R. Bhadu, A. Chakraborty, D.N. Srivastava, P. Paul, Colorimetric detection of Cu2+ and Pb2+ ions using calix [4] arene functionalized gold nanoparticles. J. Chem. Sci. 126(3), 627–635 (2014)

    Article  CAS  Google Scholar 

  32. F. Chai, C. Wang, T. Wang, L. Li, Z. Su, Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2(5), 1466–1470 (2010)

    Article  CAS  Google Scholar 

  33. Y. Yu, Y. Hong, P. Gao, M.K. Nazeeruddin, Glutathione modified gold nanoparticles for sensitive colorimetric detection of Pb2+ ions in rainwater polluted by leaking perovskite solar cells. Anal. Chem. 88(24), 12316–12322 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. A. D’Agostino, A. Taglietti, B. Bassi, A. Donà, P. Pallavicini, A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars. J. Nanopart. Res. 16(10), 2683 (2014)

    Google Scholar 

  35. Z. Wang, J.H. Lee, Y. Lu, Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 20(17), 3263–3267 (2008)

    Article  CAS  Google Scholar 

  36. H. Wei, B. Li, J. Li, S. Dong, E. Wang, DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology 19(9), 095501 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. J. Elbaz, B. Shlyahovsky, I. Willner, A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem. Commun. 13, 1569–1571 (2008)

    Google Scholar 

  38. X. Zhu, X. Gao, Q. Liu, Z. Lin, B. Qiu, G. Chen, Pb2+-introduced activation of horseradish peroxidase (HRP)-mimicking DNAzyme. Chem. Commun. 47(26), 7437–7439 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. P. Travascio, A.J. Bennet, D.Y. Wang, D. Sen, A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 6(11), 779–787 (1999)

    Article  CAS  PubMed  Google Scholar 

  40. Q. Zhang, Y. Cai, H. Li, D.M. Kong, H.X. Shen, Sensitive dual DNAzymes-based sensors designed by grafting self-blocked G-quadruplex DNAzymes to the substrates of metal ion-triggered DNA/RNA-cleaving DNAzymes. Biosens. Bioelectron. 38(1), 331–336 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. N. Nagraj, J. Liu, S. Sterling, J. Wu, Y. Lu, DNAzyme catalytic beacon sensors that resist temperature-dependent variations. Chem. Commun. 27, 4103–4105 (2009)

    Article  CAS  Google Scholar 

  42. H. Wang, Y. Kim, H. Liu, Z. Zhu, S. Bamrungsap, W. Tan, Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. Am. Chem. Soc. 131(23), 8221–8226 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. L. Zhang, N. Mi, Y. Zhang, M. Wei, H. Li, S. Yao, Label-free DNA sensor for Pb2+ based on a duplex–quadruplex exchange. Anal. Methods 5(21), 6100–6105 (2013)

    Article  CAS  Google Scholar 

  44. R. Hou, X. Niu, F. Cui, A label-free biosensor for selective detection of DNA and Pb2+ based on a G-quadruplex. RSC Adv. 6(10), 7765–7771 (2016)

    Article  CAS  Google Scholar 

  45. J. Liu, Y. Lu, Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol. Biol. 335, 275–288 (2006)

    PubMed  CAS  Google Scholar 

  46. X.B. Zhang, Z. Wang, H. Xing, Y. Xiang, Y. Lu, Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal. Chem. 82(12), 5005–5011 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Z. Yu, W. Zhou, J. Han, Y. Li, L. Fan, X. Li, Na+-induced conformational change of Pb2+-stabilized G-Quadruplex and its influence on Pb2+ detection. Anal. Chem. 88(19), 9375–9380 (2016)

    Google Scholar 

  48. S. Tang, P. Tong, H. Li, J. Tang, L. Zhang, Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dotstagging. Biosens. Bioelectron. 42, 608–611 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. E. Mohamed Ali, Y. Zheng, H.H. Yu, J.Y. Ying, Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal. Chem. 79(24), 9452–9458 (2007)

    Article  CAS  Google Scholar 

  50. M. Mozafari, F. Moztarzadeh, Microstructural and optical properties of spherical lead sulphide quantum dots-based optical sensors. Micro Nano Lett. 6(3), 161–164 (2011)

    Article  CAS  Google Scholar 

  51. M. Koneswaran, R. Narayanaswamy, RETRACTED ARTICLE: CdS/ZnS core-shell quantum dots capped with mercaptoacetic acid as fluorescent probes for Hg (II) ions. Microchim. Acta 178(1–2), 171–178 (2012)

    Article  CAS  Google Scholar 

  52. H. Qu, L. Cao, G. Su, W. Liu, R. Gao, C. Xia, J. Qin, Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J. Nanopart. Res. 16(12), 2762 (2014)

    Google Scholar 

  53. H. Hai, F. Yang, J. Li, Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Adv. 3(32), 13144–13148 (2013)

    Article  CAS  Google Scholar 

  54. M. Li, X. Zhou, S. Guo, N. Wu, Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 43, 69–74 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. L. Magerusan, C. Socaci, M. Coros, F. Pogacean, M.C. Rosu, S. Gergely, S. Pruneanu, C. Leostean, I.O. Pana, Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb2+ detection. Nanotechnology 28(11), 114001 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. Y. Zhou, L. Tang, G. Zeng, C. Zhang, X. Xie, Y. Liu, J. Wang, J. Tang, Y. Zhang, Y. Deng, Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon–gold nanoparticles and DNAzyme catalytic beacons. Talanta 146, 641–647 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Zhu, G.m. Zeng, Y. Zhang, L. Tang, J. Chen, M. Cheng, L.h. Zhang, L. He, Y. Guo, X.x. He, Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+−induced G-rich DNA conformation. Analyst 139(19), 5014–5020 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. G. Liu, L. Zhang, D. Dong, Y. Liu, J. Li, A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection. Anal. Methods 8(39), 7040–7046 (2016)

    Article  CAS  Google Scholar 

  59. F. Yang, X. Zuo, Z. Li, W. Deng, J. Shi, G. Zhang, Q. Huang, S. Song, C. Fan, Bioassays: a bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays (Adv. Mater. 27/2014). Adv. Mater. 26(27), 4597–4597 (2014)

    Article  Google Scholar 

  60. Y. Xiao, A.A. Rowe, K.W. Plaxco, Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 129(2), 262–263 (2007)

    Article  CAS  PubMed  Google Scholar 

  61. Y. Zhou, J. Zhang, L. Tang, B. Peng, G. Zeng, L. Luo, J. Gao, Y. Pang, Y. Deng, F. Zhang, A label to free GR to 5DNAzyme sensor for lead ions detection based on nanoporous gold and anionic intercalator. Talanta 165, 274–281 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. Z. Lin, Y. Chen, X. Li, W. Fang, Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: electrochemical detection of Pb2+. Analyst 136(11), 2367–2372 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. M. Jarczewska, E. Kierzkowska, R. Ziółkowski, Ł. Górski, E. Malinowska, Electrochemical oligonucleotide-based biosensor for the determination of lead ion. Bioelectrochemistry 101, 35–41 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. S. Tang, P. Tong, X. You, W. Lu, J. Chen, G. Li, L. Zhang, Label free electrochemical sensor for Pb2+ based on graphene oxide mediated deposition of silver nanoparticles. Electrochim. Acta 187, 286–292 (2016)

    Article  CAS  Google Scholar 

  65. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  CAS  Google Scholar 

  66. D.C. Marano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene. ACS nano 4(8), 4806–4814 (2010)

    Article  CAS  Google Scholar 

  67. H. Dong, W. Gao, F. Yan, H. Ji, H. Ju, Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82(13), 5511–5517 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L.J. Romasanta, R. Verdejo, M.A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013)

    Article  CAS  Google Scholar 

  69. S. Ge, K. Wu, Y. Zhang, M. Yan, J. Yu, Based biosensor relying on flower-like reduced graphene guided enzymatically deposition of polyaniline for Pb2+ detection. Biosens. Bioelectron. 80, 215–221 (2016)

    Google Scholar 

  70. C. Li, L. Wei, X. Liu, L. Lei, G. Li, Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Anal. Chim. Acta 831, 60–64 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. X. Li, G. Wang, X. Ding, Y. Chen, Y. Gou, Y. Lu, A “turn-on” fluorescent sensor for detection of Pb2+ based on graphene oxide and G-quadruplex DNA. Phys. Chem. Chem. Phys. 15(31), 12800–12804 (2013)

    Article  CAS  PubMed  Google Scholar 

  72. Z.S. Qian, X.Y. Shan, L.J. Chai, J.R. Chen, H. Feng, A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron. 68, 225–231 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Y. Xu, X. Meng, J. Liu, S. Dang, L. Shi, L. Sun, Luminescent nanoprobes based on upconversion nanoparticles and single-walled carbon nanohorns or graphene oxide for detection of Pb2+ ion. CrystEngComm 18(22), 4032–4037 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. (2018). Functional Nucleic Acid Based Biosensors for Post-transition Metal Ion Detection. In: Functional Nucleic Acid Based Biosensors for Food Safety Detection. Springer, Singapore. https://doi.org/10.1007/978-981-10-8219-1_4

Download citation

Publish with us

Policies and ethics