Skip to main content

Functional Nucleic Acid Based Biosensors for CircRNA Detection

  • Chapter
  • First Online:
Functional Nucleic Acid Based Biosensors for Food Safety Detection
  • 694 Accesses

Abstract

CircRNAs occur in the posttranscriptional shear process, and single-stranded RNA molecules form a ring through covalent bonding. The advances in high-throughput sequencing technology have fully explored noncoding linear RNA (NCL), which has made NCL reenter the researchers’ field of view, especially cirRNAs. Annular RNA has been shown to be rich, highly expressive, and evolutionarily conservative. Some annular RNAs have been shown to affect miRNA regulation of genes and can be used as miRNA sponges, and possibly has the effect of transcriptional regulation, translation, and other functions for parent genes. It also plays an important regulatory role in some diseases, for example, Alzheimer’s disease, diabetes, ischemic heart disease, and some cancers, it can halt the progress of disease, and can be used as a biological marker for disease detection. In this chapter, the formation mechanism, function, detection method, identification of novel circRNAs, and the correlation of diseases are summarized, and future research was reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.L. Sanger et al., Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. U. S. A. 73(11), 3852–3856 (1976)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.M. Nigro et al., Scrambled exons. Cell 64(3), 607–613 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. B. Capel et al., Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5), 1019–1030 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. W.R. Jeck et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2), 141–157 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.P. Barrett, P.L. Wang, J. Salzman, Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4, e07540 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. X.O. Zhang et al., Complementary sequence-mediated exon circularization. Cell 159(1), 134–147 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. W.R. Jeck, N.E. Sharpless, Detecting and characterizing circular RNAs. Nat. Biotechnol. 32(5), 453–461 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B.L. Stoddard, Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob. DNA 5(1), 7 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Costa et al., Crystal structures of a group II intron lariat primed for reverse splicing. Science 354(6316), 1–9 (2016)

    Article  CAS  Google Scholar 

  10. J. Salzman et al., Cell-type specific features of circular RNA expression. PLoS Genet. 9(9), e1003777 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T.B. Hansen et al., Natural RNA circles function as efficient microRNA sponges. Nature 495(7441), 384–388 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. T.B. Hansen, J. Kjems, C.K. Damgaard, Circular RNA and miR-7 in cancer. Cancer Res. 73(18), 5609–5612 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. T.B. Hansen et al., miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30(21), 4414–4422 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Ashwal-Fluss et al., circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56(1), 55–66 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. E.H. Hurowitz, P.O. Brown, Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae. Genome Biol. 5(1), R2 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  16. C.W. Schindler, J.J. Krolewski, M.G. Rush, Selective trapping of circular double-stranded DNA molecules in solidifying agarose. Plasmid 7(3), 263–270 (1982)

    Article  CAS  PubMed  Google Scholar 

  17. H.F. Tabak et al., Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis. Nucleic Acids Res. 16(14A), 6597–6605 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A.R. Awan, A. Manfredo, J.A. Pleiss, Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc. Natl. Acad. Sci. U. S. A. 110(31), 12762–12767 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  19. H. Suzuki et al., Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34(8), e63 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H.A. Vincent, M.P. Deutscher, Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 281(40), 29769–29775 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. G. Hsieh et al., Statistical algorithms improve accuracy of gene fusion detection. Nucleic Acids Res. 45(13), e126 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Salzman et al., Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2), e30733 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Memczak et al., Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. J.U. Guo et al., Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15(7), 409 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Hoffmann et al., A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol. 15(2), R34 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. (2018). Functional Nucleic Acid Based Biosensors for CircRNA Detection. In: Functional Nucleic Acid Based Biosensors for Food Safety Detection. Springer, Singapore. https://doi.org/10.1007/978-981-10-8219-1_13

Download citation

Publish with us

Policies and ethics