Skip to main content

Functional Nucleic Acid Based Biosensors for DNA Methylation Detection

  • Chapter
  • First Online:

Abstract

In recent years, epigenetic studies have largely concentrated on aging, embryonic development, and cancer. Presently, epigenetics is found to be important in many other areas, such as immune diseases, cardiovascular diseases, type 2 diabetes, insulin resistance, obesity, inflammation, and neurodegenerative diseases. Because epigenetic modifications can use artificial methods, by altering external or internal environmental factors, while having the ability to alter gene expression, epigenetics is considered to be an important mechanism for many unknown etiologies [1]. Great potential lies in the development of epigenetic therapies, and several inhibitors of enzymes controlling epigenetic modifications have shown promising antitumorigenic effects for some malignancies [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.W. Choi, S. Friso, Epigenetics: a new bridge between nutrition and health. Adv. Nutr. 1(1), 8–16 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. Egger et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990), 457–463 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Li, X., et al., Dynamic changes of global DNA methylation and hypermethylation of cell adhesion-related genes in rat kidneys in response to ochratoxin A. World Mycotoxin J. 1–12 (2015)

    Google Scholar 

  4. Q. Dai et al., MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 15(1), 333 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, L., et al., miR-122 plays an important role in ochratoxin A-induced hepatocyte apoptosis in vitro and in vivo. Toxicol Res (2016)

    Google Scholar 

  6. X. Fan et al., Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Mulero-Navarro, M. Esteller, Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol. 68(1), 1–11 (2008)

    Article  PubMed  Google Scholar 

  8. L.J. Rush, C. Plass, Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal. Biochem. 307(2), 191–201 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. T.H. Bestor, The DNA methyltransferases of mammals. Hum. Mol. Genet. 9(16), 2395–2402 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Dong et al., DNA methylation as an early diagnostic marker of cancer (Review). Biomed Rep 2(3), 326–330 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K.L. Tucker, Methylated cytosine and the brain: a new base for neuroscience. Neuron 30(3), 649–652 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. M. Gardiner-Garden, M. Frommer, CpG islands in vertebrate genomes. J. Mol. Biol. 196(2), 261–282 (1987)

    Article  CAS  PubMed  Google Scholar 

  13. F. Larsen et al., CpG islands as gene markers in the human genome. Genomics 13(4), 1095–1107 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. P.W. Laird, The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3(4), 253–266 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. S. Udali et al., Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol. Asp. Med. 34(4), 883–901 (2013)

    Article  CAS  Google Scholar 

  16. T. Schoofs, W.E. Berdel, C. Muller-Tidow, Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 28(1), 1–14 (2014)

    Article  CAS  Google Scholar 

  17. L. Hong, N. Ahuja, DNA methylation biomarkers of stool and blood for early detection of colon cancer. Genet Test Mol Biomarkers 17(5), 401–406 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. M. Renner et al., Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas. Genome Biol. 14(12), r137 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Szyf, DNA methylation signatures for breast cancer classification and prognosis. Genome Med 4(3), 26 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G. Zardo et al., Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet. 32(3), 453–458 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. L. Zhang et al., Simultaneous determination of global DNA methylation and hydroxymethylation levels by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Biomol. Screen. 17(7), 877–884 (2012)

    Article  PubMed  Google Scholar 

  22. M.F. Fraga, R. Rodriguez, M.J. Canal, Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis 21(14), 2990–2994 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. M.-L. Mo et al., Measurement of genome-wide DNA methylation predicts survival benefits from chemotherapy in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 141(5), 901–908 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. J.G. Herman et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. 93(18), 9821–9826 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. W.A. Palmisano et al., Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 60(21), 5954–5958 (2000)

    PubMed  CAS  Google Scholar 

  26. H. Guo et al., The DNA methylation landscape of human early embryos. Nature 511(7511), 606–610 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. H. Shi et al., Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J. Cell. Biochem. 88(1), 138–143 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. W. Xu et al., Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor. Biosens. Bioelectron. 80, 654–660 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. L. Syedmoradi, F. Esmaeili, M.L. Norton, Towards DNA methylation detection using biosensors. Analyst 141(21), 5922–5943 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. J.G. Herman et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9821–9826 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Zhang et al., Development of techniques for DNA-methylation analysis. TrAC Trends Anal. Chem. 72, 114–122 (2015)

    Article  CAS  Google Scholar 

  32. B.P. Fox, R.P. Kandpal, Transcriptional silencing of EphB6 receptor tyrosine kinase in invasive breast carcinoma cells and detection of methylated promoter by methylation specific PCR. Biochem. Biophys. Res. Commun. 340(1), 268–276 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Q. Zhang et al., A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol. Oncol. 130(1), 132–139 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Q. An et al., Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Lett. 188(1-2), 109–114 (2002)

    Article  CAS  Google Scholar 

  35. L. Bai et al., Methylation-sensitive restriction enzyme nested real time PCR, a potential approach for sperm DNA identification. J. Forensic Legal Med. 34, 34–39 (2015)

    Article  Google Scholar 

  36. P.W. Laird, Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11(3), 191–203 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. M. Bibikova et al., Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 1(1), 177–200 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. J. Pape et al., 549-DNA methylation biomarkers and treatment Effects of a Corticotropin Releasing Hormone Type 1 Receptor Antagonist in a Biologically-Defined Subset of PTSD-Patients. Biol. Psychiatry 81(10), S222 (2017)

    Article  Google Scholar 

  39. Sanchez-Mut, J.V., et al., Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex. Synapse, 71(6), (2017)

    Article  CAS  Google Scholar 

  40. M. Frommer et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89(5), 1827–1831 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. P. Subiyantoro, Methylation detection of oral cancer using bisulfite sequencing. Int. J. Oral Maxillofac. Surg. 44, e291–e292 (2015)

    Article  Google Scholar 

  42. A. Meissner et al., Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33(18), 5868–5877 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. H. Gu et al., Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat. Methods 7(2), 133–136 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Guo et al., Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat. Protoc. 10(5), 645–659 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. H. Guo et al., Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23(12), 2126–2135 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Yamada et al., The pH effect on the naphthoquinone-photosensitized oxidation of 5-methylcytosine. Chemistry 14(33), 10453–10461 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. F. Guo et al., The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161(6), 1437–1452 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. D.G. Burke et al., Accurate measurement of DNA methylation that is traceable to the international system of units. Anal. Chem. 81(17), 7294–7301 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. P. Wang et al., Investigation of DNA methylation by direct electrocatalytic oxidation. Chem. Commun. (Camb.) 46(41), 7781–7783 (2010)

    Article  CAS  Google Scholar 

  50. K. Tanaka et al., Direct labeling of 5-methylcytosine and its applications. J. Am. Chem. Soc. 129(17), 5612–5620 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. P. Wang et al., Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases. Biosens. Bioelectron. 45, 34–39 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. S. Bareyt, T. Carell, Selective detection of 5-methylcytosine sites in DNA. Angew. Chem. Int. Ed. Eng. 47(1), 181–184 (2008)

    Article  CAS  Google Scholar 

  53. Y. Xu et al., Chemical-oxidation cleavage triggered isothermal exponential amplification reaction for attomole gene-specific methylation analysis. Anal. Chem. 87(5), 2945–2951 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. S. Pan et al., Double recognition of oligonucleotide and protein in the detection of DNA methylation with surface plasmon resonance biosensors. Biosens. Bioelectron. 26(2), 850–853 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. R. Gao et al., Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler. Biosens. Bioelectron. 86, 321–329 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. T. Liu et al., Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Anal. Chem. 82(1), 229–233 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. X. Jing et al., DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens. Bioelectron. 58, 40–47 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. J.D. Suter et al., Label-free DNA methylation analysis using opto-fluidic ring resonators. Biosens. Bioelectron. 26(3), 1016–1020 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. Y. Shin et al., Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sensors Actuators B Chem. 177, 404–411 (2013)

    Article  CAS  Google Scholar 

  60. W.C. Maki et al., Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosens. Bioelectron. 23(6), 780–787 (2008)

    Article  CAS  PubMed  Google Scholar 

  61. J. Yu et al., Detection of DNA Methylation with Aerolysin Nanopore. Biophys. J. 112(3), 332a (2017)

    Article  Google Scholar 

  62. H. Qiu et al., Detection and mapping of DNA methylation with 2D material nanopores. NPJ 2D Mater Appl 1(1), 3 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  63. A. Sarathy, H. Qiu, J.P. Leburton, Graphene nanopores for electronic recognition of DNA methylation. J. Phys. Chem. B 121(15), 3757–3763 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. Y. Wang et al., Fast and precise detection of DNA methylation with tetramethylammonium-filled nanopore. Sci. Rep. 7(1), 183 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. L. Ouyang et al., A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron. 92, 755–762 (2017)

    Article  CAS  PubMed  Google Scholar 

  66. J. Gu et al., Association between P(16INK4a) promoter methylation and non-small cell lung cancer: a meta-analysis. PLoS One 8(4), e60107 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. J. Wang, Z. Zhu, H. Ma, Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal. Chem. 85(4), 2096–2101 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. M. Nazmul Islam et al., Optical biosensing strategies for DNA methylation analysis. Biosens. Bioelectron. 92, 668–678 (2017)

    Article  CAS  PubMed  Google Scholar 

  69. L. Krejcova et al., Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens. Bioelectron. 97, 384–399 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. (2018). Functional Nucleic Acid Based Biosensors for DNA Methylation Detection. In: Functional Nucleic Acid Based Biosensors for Food Safety Detection. Springer, Singapore. https://doi.org/10.1007/978-981-10-8219-1_11

Download citation

Publish with us

Policies and ethics