Skip to main content

Recent Advancements in the Clinical Evaluation of Plant-Derived Anticancer Compounds

  • Chapter
  • First Online:
  • 603 Accesses

Abstract

Cancer is a chief global health burden and the leading cause of human death worldwide next to heart diseases. The alarming rise in the mortality rate owing to cancer has driven the chase for anticancer agents to effectively combat this disease. Searching for novel and efficient compounds of natural origin has been a major aspect of concerns because they exhibit less toxic side effects. Numerous secondary metabolites from plants and their semisynthetic analogs have been identified as an excellent, novel lead structures in developing promising anticancer agents. In the current scenario, several successful anticancer drugs and their derivatives have been obtained from plant sources, and many of them are in clinical trials. Phytocompounds such as vinca alkaloids, taxanes, podophyllotoxin, camptothecin, homoharringtonine, and their derivatives have appreciably influenced cancer research on many facets. Likewise, some of the other plant-derived anticancer agents including omacetaxine mepesuccinate, ingenol mebutate, β-lapachone, flavopiridol, curcumin, etc. are currently being under phase I and II clinical trials, either individually or in concert with other anticancer agents for the treatment of a broad range of tumors like lymphomas, leukemias, and solid tumors. Customary anticancer drug discovery has targeted mainly on the cytotoxic agents that hamper metabolic pathways critical to cell division. However, during recent years, several molecular target-based compounds have been emerged concentrating on other cellular process of cancer cells such as apoptosis, metastasis, angiogenesis, etc. Hence, the present anticancer drug discovery involves high-throughput screening of phytocompounds against a series of such molecular targets. The present chapter discusses the clinical evidences of some important phytocompounds of anticancer plants, overview of their current clinical status, and recent advances in their molecular mechanism of action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  PubMed  Google Scholar 

  • Akhtar MS, Birhanu G, Demisse S (2014) Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens. Asian Pac J Trop Dis 4:S911–S919

    Article  Google Scholar 

  • Anonymous (2014) A study to assess the effectiveness of the combination of carboplatin, paclitaxel, bevacizumab and combretastatin (CA4P) in patients with chemotherapy naive lung cancer. BioPortfolio 3:31–32

    Google Scholar 

  • Ansari J, Inamdar N (2010) The promise of traditional medicines. Int J Pharmacol 6:808–812

    Article  Google Scholar 

  • Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369. https://doi.org/10.3390/molecules21040369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachner M, De Santis M (2008) Vinflunine in the treatment of bladder cancer. Ther Clin Risk Manag 4:1243–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey HH, Attia S, Love RR, Fass T, Chappell R, Tutsch K, Harris L, Jumonville A, Hansen R, Shapiro GR, Stewart JA (2008) Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother Pharmacol 62:149–157

    Article  CAS  PubMed  Google Scholar 

  • Balachandran P, Govindarajan R (2005) Cancer-An ayurvedic perspective. Pharmacol Res 51:19–30

    Article  PubMed  Google Scholar 

  • Banerjee S, Wang Z, Mohammad M, Sarkar FH, Mohammad RM (2008) Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod 71:492–496

    Article  CAS  PubMed  Google Scholar 

  • Cai YJ, Lu JJ, Zhu H, Xie H, Huang M, Lin LP, Zhang XW, Ding J (2008) Salvicine triggers DNA double-strand breaks and apoptosis by GSH-depletion driven H2O2 generation and topoisomerase II inhibition. Free Radic Biol Med 45:627–635

    Article  CAS  PubMed  Google Scholar 

  • Chanvorachote P, Chamni S, Ninsontia C, Phiboonchaiyanan PP (2016) Potential anti-metastasis natural compounds for lung cancer. Anticancer Res 36:5707–5718

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Cho SY, Pak HJ, Kim Y, Choi J, Lee YJ, Gong BH, Kang YS, Han T, Choi G, Cho Y, Lee S, Ryoo D, Park H (2017) NPCARE: database of natural products and fractional extracts for cancer regulation. J Cheminform 9:2. https://doi.org/10.1186/s13321-016-0188-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90–114

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25:41–59

    Article  PubMed  Google Scholar 

  • Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  PubMed  Google Scholar 

  • Delmonte A, Sessa C (2009) AVE8062: a new combretastatin derivative vascular disrupting agent. Expert Opin Investig Drugs 18:1541–1548

    Article  CAS  PubMed  Google Scholar 

  • Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14:4491–4499

    Article  CAS  PubMed  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S (2004) Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol 130:627–635

    Article  CAS  PubMed  Google Scholar 

  • Fallen RS, Gooderham M (2012) Ingenol mebutate: an introduction. Skin Ther Lett 17:1–3

    Google Scholar 

  • Fridlender M, Kapulnik Y, Koltai H (2015) Plant derived substances with anticancer activity: from folklore to practice. Front Plant Sci 6:799. https://doi.org/10.3389/fpls.2015.00799

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulda S (2009) Betulinic acid: a natural product with anticancer activity. Mol Nutr Food Res 53:140–146

    Article  CAS  PubMed  Google Scholar 

  • Gezahegn Z, Akhtar MS, Woyessa D, Tariku Y (2015) Antibacterial potential of Thevetia peruviana leaf extracts against food associated pathogens. J Coast Life Med 3:150–157

    Google Scholar 

  • Hert J, Irwin JJ, Laggner C, Keiser MJ, Shoichet BK (2009) Quantifying biogenic bias in screening libraries. Nat Chem Biol 5:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iveta V, Michaela M, Petr H, Rene K, Eva F, Marie S (2013) The anticancer drug ellipticine induces cytochromes P450 1A1, 1A2 and 3A, cytochrome b5 and NADPH: cytochrome P450 oxidoreductase in rat liver, kidney and lung. Int J Electrochem Sci 8:1586–1597

    Google Scholar 

  • Jaroch K, Karolak M, Górski P, Jaroch A, Krajewski A, Ilnicka A, Sloderbach A, Stefanski T, Sobiak S (2016) Combretastatins: in vitro structure-activity relationship, mode of action and current clinical status. Pharmacol Rep 68:1266–1275

    Article  CAS  PubMed  Google Scholar 

  • Johnson JJ, Mukhtar H (2007) Curcumin for chemoprevention of colon cancer. Cancer Lett 255:170–181

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S (2012) Emerging role of berbamine as an anti-cancer agent in systemic malignancies besides chronic myeloid leukemia. J Zhejiang Univ Sci B 13:761–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaled M, Belaaloui G, Jiang ZZ, Zhu X, Zhang LY (2017) Deoxypodophyllotoxin, a semi-synthetic compound from Dysosma versipellis, induces selective cell death in human breast cancer cell lines. Med Chem Res 26:1241–1258

    Article  CAS  Google Scholar 

  • Khan M, Maryam A, Zhang H, Mehmood T, Ma T (2016) Killing cancer with platycodin D through multiple mechanisms. J Cell Mol Med 20:389–402

    Article  CAS  PubMed  Google Scholar 

  • Khazir J, Mir BA, Pilcher L, Riley DL (2014) Role of plants in anticancer drug discovery. Phytochem Lett 7:173–181

    Article  CAS  Google Scholar 

  • Khazir J, Singh PP, Doma MR, Syed S, Hyder I, Gousia C, Ajay M, Alam MS, Saxena AK, Arvinda S, Gupta BD, Kumar HMS (2013) Synthesis and anticancer activity of novel spiro-isoxazoline and isoxazolidine derivatives of α-santonin. Eur J Med Chem 63:279–289

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hwang BY, Su BN, Chai H, Mi Q, Kinghorn AD, Wild R, Swanson SM (2007) Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or −7. Anticancer Res 27:2175–2183

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kutkowska J, Strzadala L, Rapak A (2017) Synergistic activity of sorafenib and betulinic acid against clonogenic activity of non-small cell lung cancer cells. Cancer Sci 108:2265–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhanpal S, Donehower RC, Rowinsky EK (2001) Phase II study of 4-ipomeanol, a naturally occurring alkylating furan, in patients with advanced hepatocellular carcinoma. Investig New Drugs 19:69–76

    Article  CAS  Google Scholar 

  • Lansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 19:177–206

    Article  CAS  Google Scholar 

  • Lee KH, Xiao Z (2012) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Taylor and Francis, Boca Raton, pp 95–122

    Google Scholar 

  • Liu GY, Bu X, Yan H, Jia WWG (2007) 20S-Protopanaxadiol-induced programmed cell death in glioma cells through caspase-dependent and independent pathways. J Nat Prod 70:259–265

    Article  CAS  PubMed  Google Scholar 

  • Liu JM, Chen LT, Chao Y, Li AF, Wu CW, Liu TS, Shiah HS, Chang JY, Chen JD, Wu HW, Lin WC, Lan C, Whang-Peng J (2002) Phase II and pharmacokinetic study of GL331 in previously treated Chinese gastric cancer patients. Cancer Chemother Pharmacol 49:425–428

    Article  CAS  PubMed  Google Scholar 

  • Mamtani R, Vaughn DJ (2011) Vinflunine in the treatment of advanced bladder cancer. Exp Rev Anticancer Ther 11:13–20

    Article  CAS  Google Scholar 

  • Marie S, Jitka P, Eva M, Jitka U, Vilim S, Zdenek D, Eva F (2012) Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology 302:233–241

    Article  CAS  Google Scholar 

  • May M (2014) Statistics: attacking an epidemic. Nature 509:S50–S51

    Article  CAS  PubMed  Google Scholar 

  • Mi Q, Lantvit D, Reyes-Lim E, Chai H, Pezzuto JM, Kinghorn AD, Swanson SM (2003) Pervilleine F, a new tropane alkaloid aromatic ester that reverses multidrug resistance. Anticancer Res 23:3607–3615

    PubMed  CAS  Google Scholar 

  • Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res 7:1081–1107

    Article  CAS  Google Scholar 

  • Min KJ, Kwon TK (2014) Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res 3:16–24

    Article  PubMed  Google Scholar 

  • Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019. https://doi.org/10.3390/molecules22061019

    Article  CAS  PubMed Central  Google Scholar 

  • Muhtasib GH, Hmadi R, Kareh M, Tohme R, Darwiche N (2015) Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 20:1531–1562

    Article  CAS  Google Scholar 

  • Mullauer FB, Kessler JH, Medema JP (2010) Betulinic acid, a natural compound with potent anticancer effects. Anti-Cancer Drugs 21:215–227

    Article  CAS  PubMed  Google Scholar 

  • Narang AS, Desai DS (2009) Anticancer drug development. In: Lu Y, Mahato RI (eds) Pharmaceutical perspectives of cancer therapeutics. Springer, New York, pp 65–66

    Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • NIH (2013) Evaluation of 20% betulinic acid ointment for treatment of Dysplastic nevi (moderate to severe dysplasia). https://clinicaltrials.gov/ct2/show/NCT00346502. Assessed 5 Oct 2017

  • Nobili S, Lippi D, Witortd E, Donninic M, Bausi L, Minia E (2009) Sergio capacciolic natural compounds for cancer treatment and prevention. Pharmacol Res 59:365–378

    Article  CAS  PubMed  Google Scholar 

  • Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67:129–135

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Chai H, Kinghorn AD (2010) The continuing search for antitumor agents from higher plants. Phytochem Lett 3:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Zhou S, Gao S, Yu Z, Zhang S, Tang M, Sun J, Ma D, Han Y, Fong W, Ko K (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evidence-Based Compl Altern Med 2013:627375. https://doi.org/10.1155/2013/627375

    Article  Google Scholar 

  • Panda AK, Chakraborty D, Sarkar I, Khan T, Sa G (2017) New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol 9:31–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson DM, Zweifel M, Middleton MR, Price PM, Folkes LK, Stratford MR, Ross P, Halford S, Peters J, Balkissoon J, Chaplin DJ, Padhani AR, Rustin GJ (2012) Phase I clinical and pharmacokinetic evaluation of the vascular disrupting agent OXi4503 in patients with advanced solid. Clin Cancer Res 18:415–1425

    Article  CAS  Google Scholar 

  • Quesada AR, Munoz-Chapuli R, Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26:483–530

    Article  CAS  PubMed  Google Scholar 

  • Rahier NJ, Thomas CJ, Hecht SM (2005) Camptothecin and its analogs. In: Cragg GM, DGI K, Newman DJ (eds) Anticancer agents from natural products. Brunner-Routledge Psychology Press, Taylor and Francis Group, Boca Raton, pp 5–21

    Google Scholar 

  • Rivera M, Ramos Y, Rodroaguez-Valentõan M, Loapez-Acevedo S, Cubano LA, Zou J, Zhang Q, Wang G, Boukli NM (2017) Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One 12:e0179587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan S, Jia F, Li J (2017) Potential antitumor effect of harmine in the treatment of thyroid cancer. Evidence-Based Compl Altern Med 2017:9402615. https://doi.org/10.1155/2017/9402615

    Article  Google Scholar 

  • Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:161–171

    Article  CAS  PubMed  Google Scholar 

  • Sargent JM, Elgie AW, Williamson CJ, Hill BT (2003) Ex-vivo effects of the dual topoisomerase inhibitor tafluposide (F11782) on cells isolated from fresh tumor samples taken from patients with cancer. Anti-Cancer Drugs 14:467–473

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology and clinical use. Wien Med Wochenschr 157:315–409

    Article  PubMed  Google Scholar 

  • Shapiro GI (2004) Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res 10:4270–4275

    Article  Google Scholar 

  • Shukla S, Meeran SM, Katiyar SK (2014) Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 355:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  • Silasi DA, Alvero AB, Rutherford TJ, Brown D, Mor G (2009) Phenoxodiol: pharmacology and clinical experience in cancer monotherapy and in combination with chemotherapeutic drugs. Expert Opin Pharmacother 10:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2007) From exotic spice to modern drug. Cell 130:765–776

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sharma B, Kanwar SS, Kumar A (2016) Lead phytochemicals for anticancer drug development. Front Plant Sci 7:1667. https://doi.org/10.3389/fpls.2016.01667

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivakumar G (2013) Colchicine semisynthetics: chemotherapeutics for cancer. Curr Med Chem 20:892–898

    PubMed  CAS  Google Scholar 

  • Slovackova J, Smarda J, Smardova J (2012) Roscovitine-induced apoptosis of H1299 cells depends on functional status of p53. Neoplasma 59:606–612

    Article  CAS  PubMed  Google Scholar 

  • Subramani R, Gonzalez E, Arumugam A, Nandy S, Gonzalez V, Medel J, Camacho F, Ortega A, Bonkoungou S, Narayan M, Ak D, Lakshmanaswamy R (2016) Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci Rep 6:19819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Compl Altern Med 2016:21. https://doi.org/10.1155/2016/3012462

    Article  Google Scholar 

  • Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR (2017) GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Compl Altern Med 2017:1517683. https://doi.org/10.1155/2017/1517683

    Article  Google Scholar 

  • Swamy MK, Pokharen N, Dahal S, Anuradha M (2011) Phytochemical and antimicrobial studies of leaf extract of Euphorbia neriifolia. J Med Plant Res 5:5785–5788

    Google Scholar 

  • Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Ind Crop Prod 87:161–176

    Article  CAS  Google Scholar 

  • Verma AK, Singh RR (2010) Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity. Indian J Pharm Sci 72:655–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwell AD (2003) Novel antitumour molecules. Drug Discov Today 8:47–50

    Article  Google Scholar 

  • Willmann M, Wacheck V, Buckley J, Nagy K, Thalhammer J, Paschke R, Triche T, Jansen B, Selzer E (2009) Characterization of NVX-207, a novel betulinic acid-derived anticancer compound. Eur J Clin Investig 39:384–394

    Article  CAS  Google Scholar 

  • Wurz GT, Kao CJ, DeGregorio MW (2016) Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 8:4–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie S, Zhou J (2017) Harnessing plant biodiversity for the discovery of novel anticancer drugs targeting microtubules. Front Plant Sci 8:720. https://doi.org/10.3389/fpls.2017.00720

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang GW, Jiang JS, Lu WQ (2015) Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci 16:24011–24031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeruva L, Pierre KJ, Elegbede A, Wang RC, Carper SW (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non-small cell lung cancer cells. Cancer Lett 257:216–226

    Article  CAS  PubMed  Google Scholar 

  • Zhan YP, Hyang XE, Cao J, Lu YY, Wu XY, Liu J, Xu X, Xiang J, Ye LH (2012) Clinical safety and efficacy of kanglaite (coix seed oil) injection combined with chemotherapy in treating patients with gastric cancer. Asian Pac J Cancer Prev 13:5319–5321

    Article  PubMed  Google Scholar 

  • Zhang HM, Zhao L, Li H, Xu H, Chen WW, Tao L (2014) Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 11:92–100

    PubMed  PubMed Central  Google Scholar 

  • Zhu HL (2011) Resveratrol and its analogues: promising antitumor agents. Anti Cancer Agents Med Chem 11:479–490

    Article  Google Scholar 

  • Zuo M, Li Y, Wang H, Zhou J, Li H, Liu H, Liu H, Xin H, Zhang S, Chen X (2008) The antitumor activity of meisoindigo against human colorectal cancer HT-29 cells in vitro and in vivo. J Chemother 20:728–733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shilpha, J., Satish, L., Ramesh, M. (2017). Recent Advancements in the Clinical Evaluation of Plant-Derived Anticancer Compounds. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Clinical Trials and Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8216-0_8

Download citation

Publish with us

Policies and ethics