Skip to main content

Toxicological and Pharmacological Use of Anticancer Compounds

  • Chapter
  • First Online:

Abstract

Knowledge of medicinal plants from traditional medicinal drug therapy has brought limitless implications towards the discovery of novel compounds for modern therapeutic applications particularly for anticancer research. Research approaches have been taken for the development of traditional medicinal products into effective, non-toxic and clinically proven pharmaceuticals. Plant-derived anticancer compounds might exert adverse toxic effects in humans, depending on the species of plant, drug administration route, dose regimens and drug receptiveness. Due to this possibility, it is important to assess the toxicity profiles of new potential anticancer compounds through proper toxicological tests. The importance of preclinical toxicology studies is continually drifting from the use of conventional methods to assess the impending adverse effects of new anticancer agents over the past 10 years. Recent practice encompasses designing and carrying out more personalized agent-directed research within the framework of clinical pharmacology guidelines. Distinctive standpoints have been brought into view by clinical application of anticancer drugs that are apparent in their discovery and development. Evolving standards in estimating novel drug candidates through clinical and preclinical trials manifest the cytotoxic compound enhancements over time, with substantial aid from circumstances, and the current interest in discovering drug candidates with specifications on reaching targeted cells. This chapter highlights the relevance of plant-derived anticancer compounds through their pharmacological and toxicological uses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM (2010) Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. JNCI: Journal of the National Cancer Institute 102(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkhalfioui F, Magnin T, Wagner R (2009) From purified GPCRs to drug discovery: the promise of protein-based methodologies. Curr Opin Pharmacol 9:629–635

    Article  CAS  PubMed  Google Scholar 

  • Almeida DA, Piazza JR, Stawski RS (2009) Inter-individual differences and intra-individual variability in the cortisol awakening response: an examination of age and gender. Psychol Aging 24:819–827

    Article  PubMed  PubMed Central  Google Scholar 

  • Alqahtani S, Mohamed LA, Kaddoumi A (2013) Experimental models for predicting drug absorption and metabolism. Expert Opin Drug Metab Toxicol 9:1241–1254

    Article  CAS  PubMed  Google Scholar 

  • Alsarhan A, Sultana M, Khatib AA, Kadir MRA (2014) Review on some Malaysian traditional medicinal plants with therapeutic properties. J Basic Appl Sci 10:149–159

    Article  Google Scholar 

  • Androutsopoulos VP, Papakyriakou A, Vourloumis D, Tsatsakis AM, Spandidos DA (2010) Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol Ther 126:9–20

    Article  CAS  PubMed  Google Scholar 

  • Arber A, Odelius A, Williams P, Lemanska A, Faithfull S (2017) Do patients on oral chemotherapy have sufficient knowledge for optimal adherence. A mixed methods study. Eur J Can Care 26:e12413

    Article  Google Scholar 

  • Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS (2016a) Role of antioxidants and natural products in inflammation. Oxidative Med Cell Longev 2016:5276130

    Article  CAS  Google Scholar 

  • Arulselvan P, Tan WS, Gothai S, Muniandy K, Fakurazi S, Esa NM, Alarfaj AA, Kumar SS (2016b) Anti-inflammatory potential of ethyl acetate fraction of Moringa oleifera in downregulating the NF-kB signaling pathway in lipopolysaccharide-stimulated macrophages. Molecules 21:E1452

    Article  CAS  PubMed  Google Scholar 

  • Arzamastseva N, Lapina Y, Ageev F, Lankin V, Mareev V, Belenkov Y (2007) Influence of metformin on the parameters of oxidative stress in patients with combined heart failure and diabetes mellitus. Eur J Heart Fail Suppl 6:123–134

    Article  Google Scholar 

  • Atanas GA, Birgit W, Eva-Maria PW, Thomas L, Christoph W, Pavel U, Eronika T, Limei W, Stefan S, Ele H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  Google Scholar 

  • Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP (2013) Honokiol: a non-adipogenic PPAR gamma agonist from nature. Biochim Biophys Acta 1830:4813–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung TN, Qu Z, Kortschak RD, Adelson DL (2017) Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci 18:1–20

    Article  CAS  Google Scholar 

  • Ayoola GA (2008) Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in southwestern Nigeria. Trop J Pharm Res 7:1019–1024

    Google Scholar 

  • Bao Y, Fenwick R (2004) Phytochemicals in health and disease. CRC Press, New York

    Book  Google Scholar 

  • Berkov S, Bastida NM, Viladomat CC (2008) Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem Anal 19:411–419

    Article  CAS  PubMed  Google Scholar 

  • Bishayee A, Ahmed S, Brankov N, Perloff M (2011) Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci 16:980–996

    Article  CAS  PubMed Central  Google Scholar 

  • Borkova L, Adamek R, Kalina P, Drasar P, Dzubak P, Gurska S, Rehulka J, Hajduch M, Urban M, Sarek J (2017) Synthesis and cytotoxic activity of triterpenoid thiazoles derived from allobetulin, methyl betulonate, methyl oleanonate, and oleanonic acid. Chem Med Chem 12:390–398

    Article  CAS  PubMed  Google Scholar 

  • Botha CJ, Penrith ML (2008) Poisonous plants of veterinary and human importance in southern Africa. J Ethnopharmacol 119:549–558

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  CAS  PubMed  Google Scholar 

  • Chanda S, Dave R (2009) In-vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr J Microbiol Res 3:981–996

    Google Scholar 

  • Chudzik M, Szlacheta IK, Krol W (2015) Triterpenes as potentially cytotoxic compounds. Molecules 20:1610–1625

    Article  CAS  PubMed  Google Scholar 

  • Chun TC, Zhi JW, Moses SC, Christopher WL (2011) Herb-herb combination for therapeutic enhancement and advancement: theory, practice and future perspectives. Molecules 18:5125–5141

    Google Scholar 

  • Colomer R, Alba E, González-Martin A, Paz-Ares L, Martin M, Llombart A, Lescure AR, Salvador J, Albanell J, Isla D, Lomas M, Rodríguez CA, Trigo JM, Germa JR, Bellmunt J, Tabernero J, Rosell R, Aranda E, Cubedo R, Baselga J (2010) Treatment of cancer with oral drugs: a position statement by the Spanish Society of Medical Oncology (SEOM). Ann Oncol 21:195–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB (2004) Oxidative stress, redox and tumor micro environment. Semin Radiat Oncol 14:256–266

    Article  Google Scholar 

  • Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67:232–244

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as sources of anticancer agents. J Ethnopharmacol 100:72–79

    Article  CAS  Google Scholar 

  • Cyriac JM, James E (2014) Switch over from intravenous to oral therapy: a concise overview. J Pharmacol Pharmacother 5:83–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS (2000) Phase I clinical trial design in cancer drug development. J Clin Oncol 18:684–692

    Article  CAS  PubMed  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Brit J Nut 88:587–605

    Article  CAS  Google Scholar 

  • Gnanaraj C, Shah MD, Makki JS, Iqbal M (2016) Hepatoprotective effects of Flagellaria indica L. are mediated through the suppression of pro-inflammatory cytokines and oxidative stress markers in rats. Pharm Biol 54:1420–1433

    Article  CAS  PubMed  Google Scholar 

  • Godugu C, Patel AR, Doddapaneni R, Somagoni J, Singh M (2014) Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One 9:e89919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo JD (2011) Toxic plants of veterinary and agricultural interest in Colombia. Int J Poison Plant Res 1:1–15

    Google Scholar 

  • Gordaliza M, Garcia PA, Del Corral JM, Castro MA, Gomez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459

    Article  CAS  PubMed  Google Scholar 

  • Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P (2016) Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrition 8:E461

    Google Scholar 

  • Grunwald HW (2007) Ethical and design issues of phase I clinical trials in cancer patients. Cancer Investig 25:124–126

    Article  Google Scholar 

  • Guo J, Zhou AW, Fu YC, Verma UN, Tripathy D, Pfrenkel U, Becerra CR (2006) Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil. Acta Pharmacol Sin 27:1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Halket JM, Daniel W, Anna MP, Raj KP, Paul DF, Peter MB (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  CAS  PubMed  Google Scholar 

  • Hamid N, Hedayatollah S (2013) Toxicity and safety of medicinal plants. J Herb Med Pharmacol 2:21–22

    Google Scholar 

  • Hassanzadeh P (2011) Colorectal cancer and NF-kB signalling pathway. Gasteroenterol Hepatol 4:127–132

    Google Scholar 

  • He X, Clarke SJ, McLachlan AJ (2011) Clinical pharmacology of chemotherapy agents in older people with cancer. Curr Gerontol Geriat Res 2011:628670

    Article  Google Scholar 

  • Jantan I, Ahmad W, Bukhari SNA (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 6:655

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffrey S, Michal B (2009) A combined evolution/structure-based approach to protein function prediction. Brief Bioinform 2:1–14

    Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev 4:253–265

    Article  CAS  Google Scholar 

  • Kawaguchi H, Hirakawa K, Miyauchi K, Koike K, Ohno Y, Sakamoto A (2010) Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or isoflurane. PLoS One 5:e11172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingston GI (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klekota J, Brauner E, Roth FP, Schreiber SL (2006) Using high-throughput screening data to discriminate compounds with single-target effects from those with side effects. J Chem Inf Model 46:1549

    Article  CAS  PubMed  Google Scholar 

  • Kyselova Z (2011) Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip Toxicol 4:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JA, Uhlik MT, Moxham CM, Tomandl D, Sall DJ (2012) Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Pharm Chem 55:4527–4538

    Article  CAS  Google Scholar 

  • Leeuwen RWF, Brundel DHS, Gelder TV, Mathijssen RHJ, Burger DM, Jansman FGA (2013) Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs. Brit J Can 108:1071–1078

    Article  CAS  Google Scholar 

  • Leonard IZ, Randall TP (2005) In vivo drug discovery in the zebra fish. Nat Rev Drug Discov 4:35–44

    Article  CAS  PubMed  Google Scholar 

  • Luc P, Arnold JV (2005) Bio-guided isolation of pharmacologically active plant components, still a valuable strategy for the finding of new lead compounds. J Ethnopharmacol 100:57–60

    Article  Google Scholar 

  • Marcy JB, Douglas KB (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  Google Scholar 

  • Mathijssen RHJ, Sparreboom A, Verweij J (2014) Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 11:272–281

    Article  CAS  PubMed  Google Scholar 

  • Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res 7:1081–1107

    Article  CAS  Google Scholar 

  • Ming-Wei W, Xiaojiang H, Kaixian C (2007) Biological screening of natural products and drug innovation in China. Phil Trans Royal Soc B 362:1093–1105

    Article  CAS  Google Scholar 

  • Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807

    Article  CAS  PubMed  Google Scholar 

  • Mondal J, Panigrahi AK, Khuda-Bukhsh AR (2014) Conventional chemotherapy: problems and scope for combined therapies with certain herbal products and dietary supplements. Aus J Mol Cell Biol 1:10

    Google Scholar 

  • Montellano PROD (2013) Cytochrome P450-activated prodrugs. Future Med Chem 5:213–228

    Article  CAS  Google Scholar 

  • Moudi MGR, Yien CYS, Nazre M (2013) Vinca alkaloids. Int J Prev Med 4:1231–1235

    PubMed  PubMed Central  Google Scholar 

  • Mullauer FB, Kessler JH, Madema JP (2010) Betulinic acid, a natural compound with potent anti-cancer effects. Anti-Can Drugs 21:215–227

    Article  CAS  Google Scholar 

  • Mut-Salud N, Alvarez PJ, Garrido JM, Carrasco E, Aranega A, Rodriguez-Serano F (2016) Antioxidant intake and antitumor therapy: toward nutritional recommendations for optimal results. Oxidative Med Cell Longev 2016:6719534

    Article  CAS  Google Scholar 

  • Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor-alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kβ system. Clin Vaccine Immunol 13:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narang AS, Desai DS (2009) Anticancer drug development: unique aspects of pharmaceutical development. In: Lu Y, Mahato RI (eds) Pharmaceutical perspectives of cancer therapeutics. Bristol-Myers Squibb, New Brunswick, pp 49–92

    Chapter  Google Scholar 

  • Nassiri AM, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 22:709–724

    Article  CAS  Google Scholar 

  • Ndhlala AR, Ncube B, Okem A, Mulaudzi RB, Staden JV (2013) Toxicology of some important medicinal plants in southern Africa. Food Chem Toxicol 62:609–621

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonnekens J, Hoeijmakers JHJ (2017) After surviving cancer, what about late life effects of the cure. EMBO Mol Med 9:4–6

    Article  CAS  PubMed  Google Scholar 

  • Parasuram S (2011) Toxicological screening. J Pharmacol Pharmacother 2:74–79

    Article  Google Scholar 

  • Park EJ, Pezzuto JM (2002) Botanicals in cancer chemoprevention. Can Met Rev 21:231–255

    Article  CAS  Google Scholar 

  • Park JY, Park CM, Kim JJ, Noh KH, Cho CW, Song YS (2007) The protective effect of chlorophyll against oxidative stress and inflammatory processes in LPS-stimulated macrophages. Food Sci Biotechnol 16:205–211

    CAS  Google Scholar 

  • Petronelli A, Pannitteri G, Testa U (2009) Triterpenoids as new promising anticancer drugs. Anti-Can Drugs 20:880–892

    Article  CAS  Google Scholar 

  • Philomena G (2011) Concerns regarding the safety and toxicity of medicinal plants-an overview. J App Pharm Sci 1:40–44

    Google Scholar 

  • Ponmari G, Annamalai A, Gopalakrishnan VK, Lakshmi PTV, Guruvayoorappan C (2014) NF-kB activation and proinflammatory cytokines mediated protective effect of Indigofera caerulea Roxb. on CCl4 induced liver damage in rats. Int Immunopharmacol 23:672–680

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Sun H, Zhang AH, Xu HY, Yan GL, Han Y et al (2014) Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin J Nat Med 12:401–406

    PubMed  CAS  Google Scholar 

  • Rabi T, Bishayee A (2009) Terpenoids and breast cancer prevention. Breast Cancer Res Treat 115:223–239

    Article  CAS  PubMed  Google Scholar 

  • Rasoanaivo P, Wright CW, Willcox ML, Gilbert B (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 10:S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Redondo-Blanco S, Fernandez J, Gutierrez-del-Rio I, Villar CJ, Lombo F (2017) New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol 8:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman MU, Tahir M, Khan AQ, Khan R, Lateef A, Hamiza OO, Qamar W, Ali F, Sultana S (2013) Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-kβ. Toxicol Lett 216:146–158

    Article  CAS  PubMed  Google Scholar 

  • Remesh A (2012) Toxicities of anticancer drugs and its management. Int J Basic Clin Pharmacol 1:2–12

    Article  Google Scholar 

  • Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T (2013) Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 19:2157–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    Article  CAS  PubMed  Google Scholar 

  • Sultana N, Ata A (2008) Oleanolic acid and related derivatives as medicinally important compounds. J Enz Inhibit Med Chem 23:739–756

    Article  CAS  Google Scholar 

  • Swinney DC, Anthony J (2011) How were new medicines discovered. Nat Rev Drug Discov 10:507–519

    Article  CAS  PubMed  Google Scholar 

  • Sznarkowska A, Kostecka A, Meller K, Bielawski KP (2017) Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 8:15996–16016

    Article  PubMed  Google Scholar 

  • Tsume Y, Incecayir T, Song X, Hilfinger JM, Amidon GL (2014) The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability. Eur J Pharm Biopharm 86:514–523

    Article  CAS  PubMed  Google Scholar 

  • Van DH, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Tech Res 3:200–201

    Article  Google Scholar 

  • Wink M, Van Wyk BE (2008) Mind-altering and poisonous plants of the world. Timber Press, Portland

    Google Scholar 

  • Workman P, Collins I (2014) Modern cancer drug discovery: integrating targets, technologies, and treatments for personalized medicine. In: Neidle S (ed) Cancer drug design and discovery, 2nd edn. Academic, San Diego, pp 3–53

    Chapter  Google Scholar 

  • Zhang D, Luo G, Ding X, Lu C (2012) Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B 2:549–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gnanaraj, C., Gothai, S., Muniandy, K., Thamaraiselvan, R., Arulselvan, P. (2017). Toxicological and Pharmacological Use of Anticancer Compounds. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Clinical Trials and Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8216-0_7

Download citation

Publish with us

Policies and ethics